Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 1;25(34):6380-6384.
doi: 10.1021/acs.orglett.3c02390. Epub 2023 Aug 23.

Cobalt-Catalyzed Aerobic Aminocyclization of Unsaturated Amides for the Synthesis of Functionalized γ- and δ-Lactams

Affiliations

Cobalt-Catalyzed Aerobic Aminocyclization of Unsaturated Amides for the Synthesis of Functionalized γ- and δ-Lactams

Manuel Freis et al. Org Lett. .

Abstract

We report the cobalt-catalyzed aminocyclization of unsaturated N-acyl sulfonamides in the presence of oxygen to provide γ- and δ-lactam aldehydes. Use of an optically active cobalt catalyst resulted in the formation of enantiomerically enriched γ-and δ-lactam alcohols. The γ-lactam aldehydes and alcohols obtained were elaborated into useful building blocks.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Biologically Active γ- and δ-Lactams and Aminocyclization of Unsaturated Amides
Scheme 2
Scheme 2. Prior Work: Cyclization of Unsaturated N-Acyl Sulfonamides and Unsaturated N-Aryl Amides
Scheme 3
Scheme 3. Substrate Scope for the Cobalt-Catalyzed Aminocyclization of Unsaturated N-Acyl Sulfonamides
Scheme 4
Scheme 4. Substrate Scope of the Cobalt-Catalyzed Aminocyclization with Subsequent Reduction
Enantiomeric ratios were determined via chiral HPLC or SFC by comparison with racemic samples (see SI). For the enantioenriched reaction it was found, that catalyst C2 required higher catalyst loadings of 20 mol %. Reaction conditions: (b) 55 °C, 2 h; (c) 55 °C, 48 h. (d) e.r. of the major diastereomer.
Scheme 5
Scheme 5. Selected Derivatization of γ-Lactam Aldehydes and Alcohols

Similar articles

References

    1. Di Maso M. J.; Nepomuceno G. M.; St. Peter M. A.; Gitre H. H.; Martin K. S.; Shaw J. T. Synthesis of (±)-Bisavenanthramide B-6 by an Anionic Anhydride Mannich Reaction. Org. Lett. 2016, 18, 1740–1743. 10.1021/acs.orglett.6b00413. - DOI - PubMed
    2. Shen D.-Y.; Nguyen T. N.; Wu S.-J.; Shiao Y.-J.; Hung H.-Y.; Kuo P.-C.; Kuo D.-H.; Thang T. D.; Wu T.-S. γ- and δ-Lactams from the Leaves of Clausena lansium. J. Nat. Prod. 2015, 78, 2521–2530. 10.1021/acs.jnatprod.5b00148. - DOI - PubMed
    3. Fu T.-h.; McElroy W. T.; Shamszad M.; Martin S. F. Formal Syntheses of Naturally Occurring Welwitindolinones. Org. Lett. 2012, 14, 3834–3837. 10.1021/ol301424h. - DOI - PMC - PubMed
    4. Shenvi R. A.; Corey E. J. A Short and Efficient Synthesis of (−)-7-Methylomuralide, a Potent Proteasome Inhibitor. J. Am. Chem. Soc. 2009, 131, 5746–5747. 10.1021/ja901400q. - DOI - PMC - PubMed
    5. Okazaki Y.; Ishizuka A.; Ishihara A.; Nishioka T.; Iwamura H. New Dimeric Compounds of Avenanthramide Phytoalexin in Oats. J. Org. Chem. 2007, 72, 3830–3839. 10.1021/jo0701740. - DOI - PubMed
    6. Masse C. E.; Morgan A. J.; Adams J.; Panek J. S. Syntheses and Biological Evaluation of (+)-Lactacystin and Analogs. Eur. J. Org. Chem. 2000, 2000, 2513–2528. 10.1002/1099-0690(200007)2000:14<2513::AID-EJOC2513>3.0.CO;2-D. - DOI
    7. Caruano J.; Muccioli G. G.; Robiette R. Biologically active γ-lactams: synthesis and natural sources. Org. Biomol. Chem. 2016, 14, 10134–10156. 10.1039/C6OB01349J. - DOI - PubMed
    1. Fong A.; Ross M.; Boudreau J.; Nokhbeh R.; Tilbe K.; Lee H. Raja 42, a novel gamma lactam compound, is effective against Clostridioides difficile. PLoS One 2021, 16 (9), e025714310.1371/journal.pone.0257143. - DOI - PMC - PubMed
    2. Davies G. M; Hitchcock P. B; Loakes D.; Young D. W Synthesis of Reactive γ-Lactams Related to Penicillins and Cephalosporins. Tetrahedron Lett. 1996, 37, 5601–5604. 10.1016/0040-4039(96)01135-5. - DOI
    1. Velthuisen E. J.; Johns B. A.; Temelkoff D. P.; Brown K. W.; Danehower S. C. The design of 8-hydroxyquinoline tetracyclic lactams as HIV-1 integrase strand transfer inhibitors. Eur. J. Med. Chem. 2016, 117, 99–112. 10.1016/j.ejmech.2016.03.038. - DOI - PubMed
    2. Metífiot M.; Maddali K.; Johnson B. C.; Hare S.; Smith S. J.; Zhao X. Z.; Marchand C.; Burke T. R. Jr.; Hughes S. H.; Cherepanov P.; Pommier Y. Activities, Crystal Structures, and Molecular Dynamics of Dihydro-1H-isoindole Derivatives, Inhibitors of HIV-1 Integrase. ACS Chem. Biol. 2013, 8, 209–217. 10.1021/cb300471n. - DOI - PMC - PubMed
    1. O̅mura S.; Crump A. Lactacystin: first-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J. Antibiot. 2019, 72, 189–201. 10.1038/s41429-019-0141-8. - DOI - PMC - PubMed
    2. Fenical W.; Jensen P. R.; Palladino M. A.; Lam K. S.; Lloyd G. K.; Potts B. C. Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg. Med. Chem. 2009, 17, 2175–2180. 10.1016/j.bmc.2008.10.075. - DOI - PMC - PubMed
    1. Zhu J.; Mix E.; Winblad B. The Antidepressant and Antiinflammatory Effects of Rolipram in the Central Nervous System. CNS Drug Reviews 2001, 7, 387–398. 10.1111/j.1527-3458.2001.tb00206.x. - DOI - PMC - PubMed