Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 6;145(35):19164-19170.
doi: 10.1021/jacs.3c04228. Epub 2023 Aug 23.

Hetero-Diels-Alder Reaction between Singlet Oxygen and Anthracene Drives Integrative Cage Self-Sorting

Affiliations

Hetero-Diels-Alder Reaction between Singlet Oxygen and Anthracene Drives Integrative Cage Self-Sorting

Yuchong Yang et al. J Am Chem Soc. .

Abstract

A ZnII8L6 pseudocube containing anthracene-centered ligands, a ZnII4L'4 tetrahedron with a similar side length as the cube, and a trigonal prism ZnII6L3L'2 were formed in equilibrium from a common set of subcomponents. Hetero-Diels-Alder reaction with photogenerated singlet oxygen transformed the anthracene-containing "L" ligands into endoperoxide "LO" ones and ultimately drove the integrative self-sorting to form the trigonal prismatic cage ZnII6LO3L'2 exclusively. This ZnII6LO3L'2 structure lost dioxygen in a retro-Diels-Alder reaction after heating, which resulted in reversion to the initial ZnII8L6 + ZnII4L'4 ⇌ 2 × ZnII6L3L'2 equilibrating system. Whereas the ZnII8L6 pseudocube had a cavity too small for guest encapsulation, the ZnII6L3L'2 and ZnII6LO3L'2 trigonal prisms possessed peanut-shaped internal cavities with two isolated compartments divided by bulky anthracene panels. Guest binding was also observed to drive the equilibrating system toward exclusive formation of the ZnII6L3L'2 structure, even in the absence of reaction with singlet oxygen.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(a) Self-assembly and structural transformation of pseudocubic cage 1 and tetrahedral cage 2 from tetramine A and triamine B, respectively. (b) Construction of trigonal prismatic cage 3 and its transformation into cage 4 via hetero-Diels–Alder reaction with photogenerated 1O2. (c) Schematic illustrating how the ligands panel the faces of cages 14.
Figure 2
Figure 2
(a) X-ray structure of cage 1 (Zn, yellow; N, blue; O, red; C, gray; H, white). DFT-minimized structures of (b) trigonal prismatic cages 3 and (c) 4. (d) DFT-minimized structure of pseudocubic 5.
Figure 3
Figure 3
Interacting system of cages before and after reaction of 1 with 1O2. (a) The reaction between 1 and 2 led to an equilibrium mixture containing 1, 2, and 3; (b) 1 reacted reversibly with in situ generated 1O2 to form 5, (c) which in turn reacted with 2 to form only 4; (d) treatment of the equilibrium mixture of 13 with 1O2 gave only 4; both processes (b) and (d) were reversible following thermal retro-cycloaddition. (e) The reversibility of process (d) is charted over five cycles.
Figure 4
Figure 4
(a) Cavity volumes of 1, 3, 4, and 5, outlined in deep blue mesh. (b) Guest molecules G1G5 were encapsulated by both 3 and 4 (binding constants of guests G1G5 with 4 are given below), whereas G6 was encapsulated only by 5 (binding constants of G65 are given below). (c) G1 induced conversion from 1 and 2 to form exclusively G13. (d) G6 was taken up and released as a result of the reversible 1O2-mediated transformation of 1 to 5.

References

    1. Safont-Sempere M. M.; Fernández G.; Würthner F. Self-Sorting Phenomena in Complex Supramolecular Systems. Chem. Rev. 2011, 111, 5784–5814. 10.1021/cr100357h. - DOI - PubMed
    2. Jiang W.; Schalley C. A. Integrative Self-Sorting is a Programming Language for High Level Self-Assembly. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 10425–10429. 10.1073/pnas.0809512106. - DOI - PMC - PubMed
    3. Hutin M.; Cramer C. J.; Gagliardi L.; Shahi A. R. M.; Bernardinelli G.; Cerny R.; Nitschke J. R. Self-Sorting Chiral Subcomponent Rearrangement During Crystallization. J. Am. Chem. Soc. 2007, 129, 8774–8780. 10.1021/ja070320j. - DOI - PubMed
    4. de Greef T. F. A.; Ercolani G.; Ligthart G. B. W. L.; Meijer E. W.; Sijbesma R. P. Influence of Selectivity on the Supramolecular Polymerization of AB-Type Polymers Capable of Both A·A and A·B Interactions. J. Am. Chem. Soc. 2008, 130, 13755–13764. 10.1021/ja8046409. - DOI - PubMed
    5. Jędrzejewska H.; Szumna A. Making a Right or Left Choice: Chiral Self-Sorting as a Tool for the Formation of Discrete Complex Structures. Chem. Rev. 2017, 117, 4863–4899. 10.1021/acs.chemrev.6b00745. - DOI - PubMed
    6. Huang Z.; Yang L.; Liu Y.; Wang Z.; Scherman O. A.; Zhang X. Supramolecular Polymerization Promoted and Controlled through Self-Sorting. Angew. Chem., Int. Ed. 2014, 53, 5351–5355. 10.1002/anie.201402817. - DOI - PubMed
    7. Mahata K.; Saha M. L.; Schmittel M. From an Eight-Component Self-Sorting Algorithm to a Trisheterometallic Scalene Triangle. J. Am. Chem. Soc. 2010, 132, 15933–15935. 10.1021/ja108419k. - DOI - PubMed
    8. Hsu C. W.; Miljanić O. Š. Adsorption-Driven Self-Sorting of Dynamic Imine Libraries. Angew. Chem., Int. Ed. 2015, 54, 2219–2222. 10.1002/anie.201409741. - DOI - PubMed
    9. Osowska K.; Miljanić O. S. Oxidative Kinetic Self-Sorting of a Dynamic Imine Library. J. Am. Chem. Soc. 2011, 133, 724–727. 10.1021/ja109754t. - DOI - PubMed
    1. Lista M.; Areephong J.; Sakai N.; Matile S. Lateral Self-Sorting on Surfaces: a Practical Approach to Double-Channel Photosystems. J. Am. Chem. Soc. 2011, 133, 15228–15231. 10.1021/ja204020p. - DOI - PubMed
    2. Shigemitsu H.; Fujisaku T.; Tanaka W.; Kubota R.; Minami S.; Urayama K.; Hamachi I. An Adaptive Supramolecular Hydrogel Comprising Self-Sorting Double Nanofibre Networks. Nat. Nanotechnol. 2018, 13, 165–172. 10.1038/s41565-017-0026-6. - DOI - PubMed
    3. Dressel C.; Reppe T.; Prehm M.; Brautzsch M.; Tschierske C. Chiral Self-Sorting and Amplification in Isotropic Liquids of Achiral Molecules. Nat. Chem. 2014, 6, 971–977. 10.1038/nchem.2039. - DOI - PubMed
    4. Yang Y.; Hu H.; Chen L.; Bai H.; Wang S.; Xu J.-F.; Zhang X. Antibacterial Supramolecular Polymers Constructed via Self-Sorting: Promoting Antibacterial Performance and Controllable Degradation. Mater. Chem. Front. 2019, 3, 806–811. 10.1039/C9QM00028C. - DOI
    5. Wu G. Y.; Shi X.; Phan H.; Qu H.; Hu Y. X.; Yin G. Q.; Zhao X.-L.; Li X.; Xu L.; Yu Q.; Yang H. B. Efficient Self-Assembly Of Heterometallic Triangular Necklace with Strong Antibacterial Activity. Nat. Commun. 2020, 11, 3178.10.1038/s41467-020-16940-z. - DOI - PMC - PubMed
    6. Liang R.; Samanta J.; Shao B.; Zhang M.; Staples R. J.; Chen A. D.; Tang M.; Wu Y.; Aprahamian I.; Ke C. Angew. Chem., Int. Ed. 2021, 60, 23176–23181. 10.1002/anie.202109987. - DOI - PubMed
    7. Hollstein S.; Shyshov O.; Hanževački M.; Zhao J.; Rudolf T.; Jäger C. M.; von Delius M. Dynamic Covalent Self-Assembly of Chloride-and Ion-Pair-Templated Cryptates. Angew. Chem., Int. Ed. 2022, 61, e20220183110.1002/anie.202201831. - DOI - PMC - PubMed
    8. Ubasart E.; Borodin O.; Fuertes-Espinosa C.; Xu Y.; García-Simón C.; Gómez L.; Juanhuix J.; Gándara F.; Imaz I.; Maspoch D.; von Delius M.; Ribas X. A Three-Shell Supramolecular Complex Enables the Symmetry-Mismatched Chemo-and Regioselective bis-Functionalization of C60. Nat. Chem. 2021, 13, 420–427. 10.1038/s41557-021-00658-6. - DOI - PubMed
    9. Cohen E.; Weissman H.; Pinkas I.; Shimoni E.; Rehak P.; Král P.; Rybtchinski B. Controlled Self-Assembly of Photofunctional Supramolecular Nanotubes. ACS Nano 2018, 12, 317–326. 10.1021/acsnano.7b06376. - DOI - PubMed
    1. Jozeliu̅naitė A.; Javorskis T.; Vaitkevičius V.; Klimavičius V.; Orentas E. Fully Supramolecular Chiral Hydrogen-Bonded Molecular Tweezer. J. Am. Chem. Soc. 2022, 144, 8231–8241. 10.1021/jacs.2c01455. - DOI - PubMed
    1. Caulder D. L.; Raymond K. N. Superamolecular Self-Recognition and Self-Assembly in Gallium (III) Catecholamide Triple Helices. Angew. Chem., Int. Ed. 1997, 36, 1440–1442. 10.1002/anie.199714401. - DOI
    2. Serrano-Molina D.; Montoro-García C.; Mayoral M. J.; de Juan A.; González-Rodríguez D. Self-Sorting Governed by Chelate Cooperativity. J. Am. Chem. Soc. 2022, 144, 5450–5460. 10.1021/jacs.1c13295. - DOI - PMC - PubMed
    3. Mahata K.; Schmittel M. From 2-Fold Completive to Integrative Self-Sorting: A Five-Component Supramolecular Trapezoid. J. Am. Chem. Soc. 2009, 131, 16544–16554. 10.1021/ja907185k. - DOI - PubMed
    1. Shaller A. D.; Wang W.; Gan H. Y.; Li A. D. Q. Tunable Molecular Assembly Codes Direct Reaction Pathways. Angew. Chem., Int. Ed. 2008, 47, 7705–7709. 10.1002/anie.200802606. - DOI - PubMed