Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep;621(7980):773-781.
doi: 10.1038/s41586-023-06440-7. Epub 2023 Aug 23.

Native diversity buffers against severity of non-native tree invasions

Camille S Delavaux  1 Thomas W Crowther  2 Constantin M Zohner  2 Niamh M Robmann  2 Thomas Lauber  2 Johan van den Hoogen  2 Sara Kuebbing  3 Jingjing Liang  4 Sergio de-Miguel  5   6 Gert-Jan Nabuurs  7 Peter B Reich  8   9   10 Meinrad Abegg  11 Yves C Adou Yao  12 Giorgio Alberti  13   14 Angelica M Almeyda Zambrano  15 Braulio Vilchez Alvarado  16 Esteban Alvarez-Dávila  17 Patricia Alvarez-Loayza  18 Luciana F Alves  19 Christian Ammer  20 Clara Antón-Fernández  21 Alejandro Araujo-Murakami  22 Luzmila Arroyo  22 Valerio Avitabile  23 Gerardo A Aymard  24   25 Timothy R Baker  26 Radomir Bałazy  27 Olaf Banki  28 Jorcely G Barroso  29 Meredith L Bastian  30   31 Jean-Francois Bastin  32 Luca Birigazzi  33 Philippe Birnbaum  34   35   36 Robert Bitariho  37 Pascal Boeckx  38 Frans Bongers  7 Olivier Bouriaud  39 Pedro H S Brancalion  40 Susanne Brandl  41 Roel Brienen  26 Eben N Broadbent  42 Helge Bruelheide  43   44 Filippo Bussotti  45 Roberto Cazzolla Gatti  46 Ricardo G César  40 Goran Cesljar  47 Robin Chazdon  48   49 Han Y H Chen  50 Chelsea Chisholm  2 Hyunkook Cho  51 Emil Cienciala  52   53 Connie Clark  54 David Clark  55 Gabriel D Colletta  56 David A Coomes  57 Fernando Cornejo Valverde  58 José J Corral-Rivas  59 Philip M Crim  60   61 Jonathan R Cumming  60 Selvadurai Dayanandan  62 André L de Gasper  63 Mathieu Decuyper  7   64 Géraldine Derroire  65 Ben DeVries  66 Ilija Djordjevic  67 Jiri Dolezal  68   69 Aurélie Dourdain  65 Nestor Laurier Engone Obiang  70 Brian J Enquist  71   72 Teresa J Eyre  73 Adandé Belarmain Fandohan  74 Tom M Fayle  75   76 Ted R Feldpausch  77 Leandro V Ferreira  78 Markus Fischer  79 Christine Fletcher  80 Lorenzo Frizzera  81 Javier G P Gamarra  82 Damiano Gianelle  81 Henry B Glick  83 David J Harris  84 Andrew Hector  85 Andreas Hemp  86 Geerten Hengeveld  7 Bruno Hérault  87   88 John L Herbohn  49   89 Martin Herold  7 Annika Hillers  90   91 Eurídice N Honorio Coronado  92 Cang Hui  93   94 Thomas T Ibanez  35   36 Iêda Amaral  95 Nobuo Imai  96 Andrzej M Jagodziński  97   98 Bogdan Jaroszewicz  99 Vivian Kvist Johannsen  100 Carlos A Joly  101 Tommaso Jucker  102 Ilbin Jung  51 Viktor Karminov  103 Kuswata Kartawinata  104 Elizabeth Kearsley  105 David Kenfack  106 Deborah K Kennard  107 Sebastian Kepfer-Rojas  100 Gunnar Keppel  108 Mohammed Latif Khan  109 Timothy J Killeen  22 Hyun Seok Kim  110   111   112   113 Kanehiro Kitayama  114 Michael Köhl  115 Henn Korjus  116 Florian Kraxner  117 Diana Laarmann  116 Mait Lang  116 Simon L Lewis  26   118 Huicui Lu  119 Natalia V Lukina  120 Brian S Maitner  71 Yadvinder Malhi  121 Eric Marcon  122 Beatriz Schwantes Marimon  123 Ben Hur Marimon-Junior  123 Andrew R Marshall  49   124   125 Emanuel H Martin  126 Olga Martynenko  103 Jorge A Meave  127 Omar Melo-Cruz  128 Casimiro Mendoza  129 Cory Merow  48 Abel Monteagudo Mendoza  130   131 Vanessa S Moreno  40 Sharif A Mukul  49   132 Philip Mundhenk  115 María Guadalupe Nava-Miranda  133   134   132 David Neill  135 Victor J Neldner  73 Radovan V Nevenic  67 Michael R Ngugi  73 Pascal A Niklaus  136 Jacek Oleksyn  97 Petr Ontikov  103 Edgar Ortiz-Malavasi  16 Yude Pan  137 Alain Paquette  138 Alexander Parada-Gutierrez  22 Elena I Parfenova  139 Minjee Park  4   110 Marc Parren  140 Narayanaswamy Parthasarathy  141 Pablo L Peri  142 Sebastian Pfautsch  143 Oliver L Phillips  26 Nicolas Picard  144 Maria Teresa T F Piedade  145 Daniel Piotto  146 Nigel C A Pitman  104 Irina Polo  147 Lourens Poorter  7 Axel D Poulsen  84 Hans Pretzsch  148 Freddy Ramirez Arevalo  149 Zorayda Restrepo-Correa  150 Mirco Rodeghiero  81   151 Samir G Rolim  146 Anand Roopsind  152 Francesco Rovero  153   154 Ervan Rutishauser  155 Purabi Saikia  156 Christian Salas-Eljatib  157   158   159 Philippe Saner  160 Peter Schall  20 Dmitry Schepaschenko  117   139   161 Michael Scherer-Lorenzen  162 Bernhard Schmid  136 Jochen Schöngart  145 Eric B Searle  138 Vladimír Seben  163 Josep M Serra-Diaz  164   165 Douglas Sheil  166   167 Anatoly Z Shvidenko  117 Javier E Silva-Espejo  168 Marcos Silveira  169 James Singh  170 Plinio Sist  87 Ferry Slik  171 Bonaventure Sonké  172 Alexandre F Souza  173 Stanislaw Miscicki  174 Krzysztof J Stereńczak  27 Jens-Christian Svenning  165   175 Miroslav Svoboda  176 Ben Swanepoel  177 Natalia Targhetta  145 Nadja Tchebakova  139 Hans Ter Steege  28   178 Raquel Thomas  179 Elena Tikhonova  120 Peter M Umunay  180 Vladimir A Usoltsev  181 Renato Valencia  182 Fernando Valladares  183 Fons van der Plas  184 Tran Van Do  185 Michael E van Nuland  186 Rodolfo M Vasquez  130 Hans Verbeeck  105 Helder Viana  187   188 Alexander C Vibrans  63   189 Simone Vieira  190 Klaus von Gadow  191 Hua-Feng Wang  192 James V Watson  193 Gijsbert D A Werner  194 Susan K Wiser  195 Florian Wittmann  196 Hannsjoerg Woell  197 Verginia Wortel  198 Roderik Zagt  199 Tomasz Zawiła-Niedźwiecki  200 Chunyu Zhang  201 Xiuhai Zhao  201 Mo Zhou  4 Zhi-Xin Zhu  192 Irie C Zo-Bi  88 Daniel S Maynard  2   202
Affiliations

Native diversity buffers against severity of non-native tree invasions

Camille S Delavaux et al. Nature. 2023 Sep.

Erratum in

  • Author Correction: Native diversity buffers against severity of non-native tree invasions.
    Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, Kuebbing S, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Ka… See abstract for full author list ➔ Delavaux CS, et al. Nature. 2023 Oct;622(7982):E2. doi: 10.1038/s41586-023-06654-9. Nature. 2023. PMID: 37752352 Free PMC article. No abstract available.

Abstract

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Distribution of the study data.
Distribution of the full study dataset, coded for non-native severity (n = 471,888 plots). The map shows average per cent invasion across a 1-degree hexagonal grid, from non-invaded (0%) pixels in green to completely invaded (100%) pixels in purple. Plots are considered invaded if there is any non-native tree present.
Fig. 2
Fig. 2. Anthropogenic drivers are more important than native diversity in determining invasion occurrence.
a,b, Importance (Shapley additive explanations (SHAP) values) of all variables included in random forest models ordered from greatest to least important, alongside influence of distance to ports, native richness and native redundancy on non-native presence (whether a plot is invaded or not) for global models of phylogenetic (a) and functional (b) diversity (phylogenetic diversity, n = 17,640 plots; functional diversity, n = 17,271 plots). All results shown are from random forest models. Note that y-axis ranges differ among panels, with the variable importance plots representing the corresponding magnitude. Error bands represent 95% confidence intervals.
Fig. 3
Fig. 3. Native diversity is the most important driver of invasion severity.
a,b, Importance (Shapley additive explanations (SHAP) values) of all variables included in random forest models ordered from greatest to least important, alongside influence of distance to ports, native richness and native redundancy on invasion severity for global models of phylogenetic (a) and functional (b) diversity (phylogenetic diversity, n = 3,498 plots; functional diversity, n = 3,368 plots). Plots are shown for the severity of invasion measured as non-native species abundance (proportion of basal area with non-native plant species); plots for non-native species richness (proportion of non-native plant species) are shown in Extended Data Fig. 4. All results shown are from random forest models. Note that the y-axis ranges differ among panels, with the variable importance plots representing the corresponding magnitude. Error bands represent 95% confidence intervals.
Fig. 4
Fig. 4. Environmental filtering at temperature extremes.
a,c, Estimates of overlapping variables included in temperate and tropical GLM models (forest plot) for phylogenetic (a) and functional (c) diversity models (phylogenetic diversity, n = 3,498; functional diversity, n = 3,368). Values to the left of the zero line indicate negative model estimates, and those to the right indicate positive estimates. b,d, Relationship between mean annual temperature and invasion strategy for phylogenetic (b) and functional (d) diversity models, showing that at extreme temperatures invasion occurs through similarity (Supplementary Table 7; phylogenetic diversity: P(1) = 9.69 × 10−14, P(2) = 2.13 × 10−11; functional diversity: P(1) < 2 × 10−16, P(2) = 1.07 × 10−4, where P(1) and P(2) represent each temperature and temperature squared P values, respectively). Note for functional diversity, this pattern only holds at low temperatures. Error bars and bands represent standard error.
Fig. 5
Fig. 5. Proximity to ports weakens environmental filtering in the temperate bioclimate zone.
a,b, In temperate plots far from ports, temperature is positively correlated with an invasion strategy of increasing dissimilarity for phylogenetic (a) and functional (b) diversity (phylogenetic diversity: n = 2,710 plots, P = 6.37 × 10−6; functional diversity: n = 2,603, P < 2 × 10−16). c,d, This relationship between temperature and invasion strategy weakens for phylogenetic (c) and functional (d) diversity with proximity to ports (Supplementary Table 7; phylogenetic diversity: P = 0.0001; functional diversity: P = 2.71 × 10−13). Lines and points represent the lowest (c,d) and highest (a,b) 10% of data. Error bands represent standard error.
Extended Data Fig. 1
Extended Data Fig. 1. Map of non-native invasion probability.
Map showing probability of non-native tree presence based on the probability output of the random forest classifier (A, total n = 368,030 plots, n per iteration = 10,000 plots) alongside maps showing uncertainty in predictions (B) including local uncertainty of invasion probability via bootstrapped coefficient of variation (i) and extent of extrapolation as percentage of bands outside univariate (ii) and multivariate (ii) training range. Regions outside the Area of Applicability are indicated with dots.
Extended Data Fig. 2
Extended Data Fig. 2. Map of non-native invasion probability inside the area of applicability.
Map showing probability of non-native tree presence based on the probability output of the random forest classifier (A, total n = 368,030 plots, n per iteration = 10,000 plots) alongside maps showing uncertainty in predictions (B) including local uncertainty of invasion probability via bootstrapped coefficient of variation (i) and extent of extrapolation as percentage of bands outside univariate (ii) and multivariate (ii) training range. Regions outside the Area of Applicability are masked.
Extended Data Fig. 3
Extended Data Fig. 3. Mean nearest taxon distance (MNTD).
Mean nearest taxon distance is the average distance to nearest neighbor by branch length on the tree, which represents redundancy in the community (A). For each species i, the sum of all shortest distances d to each other taxa j is calculated; these values are then averaged across the total species in the tree (N). If invasion occurs via non-natives being similar to the native community, this would lead to the expectation that MNTD decreases, increasing redundancy (B). Conversely, if non-native invasion occurs via non-natives being dissimilar to the native community, this would lead to the expectation that MNTD increases, reducing redundancy (C). Taxon D represents a non-native addition to the community.
Extended Data Fig. 4
Extended Data Fig. 4. Native diversity mediates degree of non-native invasion.
Variable importance (SHAP values) of all variables included in random forest models, ordered from greatest to least importance alongside influence of distance to ports, native richness and native redundancy on invasion severity (proportion of non-native plant species) for (A) phylogenetic diversity and (B) functional diversity global models (phylogenetic n = 3,498 plots; functional n = 3,368 plots). All results shown are from random forest models. Note that y-axis ranges differ among panels, with the variable importance plots representing the corresponding magnitude.
Extended Data Fig. 5
Extended Data Fig. 5. Variable importance for non-native invasion strategy.
Variable importance (SHAP values) of all variables included in random forest models, ordered from greatest to least importance alongside influence of native richness, mean annual temperature and mean annual precipitation on invasion strategy for (A) phylogenetic diversity and (B) functional diversity global models (phylogenetic n = 3,498 plots; functional n = 3,368 plots). All results shown are from random forest models. Note that y-axis ranges differ among panels, with the variable importance plots representing the corresponding magnitude. Error bands represent 95% confidence intervals.
Extended Data Fig. 6
Extended Data Fig. 6. Variable importance for analyses using data down-sampled without preferentially retaining invaded plots.
Variable importance (SHAP values) for all variables included in random forest models, ordered from greatest to least importance for (A) non-native presence, (B) richness, and (C) abundance, each for (i) phylogenetic diversity and (ii) functional diversity global models (presence: phylogenetic n = 18,898; functional n = 18,611, richness: phylogenetic n = 840 plots; functional n = 823 plots, abundance: phylogenetic n = 840 plots; functional n = 823 plots). All results shown are from random forest models with down-sampled data, but without preferentially retaining invaded plots. Error bands represent 95% confidence intervals.

References

    1. Pyšek P, et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020;95:1511–1534. - PMC - PubMed
    1. Pejchar L, Mooney HA. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009;24:497–504. - PubMed
    1. Richardson DM, Hui C, Nuñez MA, Pauchard A. Tree invasions: patterns, processes, challenges and opportunities. Biol. Invasions. 2014;16:473–481.
    1. Richardson DM, Rejmánek M. Trees and shrubs as invasive alien species–a global review. Divers. Distrib. 2011;17:788–809.
    1. Plants of the World Online. Royal Botanic Gardens Kewhttp://www.plantsoftheworldonline.org/ (2022).

Publication types

LinkOut - more resources