Checkpoint kinase 1 inhibitor + low-dose hydroxyurea efficiently kills BRAF inhibitor- and immune checkpoint inhibitor-resistant melanomas
- PMID: 37614154
- DOI: 10.1111/pcmr.13120
Checkpoint kinase 1 inhibitor + low-dose hydroxyurea efficiently kills BRAF inhibitor- and immune checkpoint inhibitor-resistant melanomas
Abstract
Treatment of melanomas with targeted and immunotherapies has proven effective, but resistance to both treatments is a common outcome leaving a high proportion of patients without effective alternative treatment options. Replication stress is a common feature of melanomas, and this is effectively targeted using a combination of checkpoint kinase 1 (CHK1) inhibitor and low-dose hydroxyurea (LDHU). This combination also promotes inflammatory and anti-tumour immune responses in vivo. Melanoma cell lines resistant to BRAF inhibitor (BRAFi) or immune checkpoint inhibitors (ICI) retain their sensitivity to CHK1i + LDHU, with sensitivity similar to that of parental tumours. In vivo, BRAFi-resistant and BRAFi-sensitive parental tumours produce an identical immune response with treatment.
Keywords: CHK1 inhibitor; immune response; replication stress; treatment resistance.
© 2023 The Authors. Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.
References
REFERENCES
-
- Christofyllakis, K., Pföhler, C., Bewarder, M., Müller, C. S. L., Thurner, L., Rixecker, T., Vogt, T., Stilgenbauer, S., Yordanova, K., & Kaddu-Mulindwa, D. (2021). Adjuvant therapy of high-risk (Stages IIC-IV) malignant melanoma in the post interferon-alpha era: A systematic review and meta-analysis. Frontiers in Oncology, 10, 637161.
-
- Czarnecka, A. M., Bartnik, E., Fiedorowicz, M., & Rutkowski, P. (2020). Targeted therapy in melanoma and mechanisms of resistance. International Journal of Molecular Sciences, 21(13), 4576. https://doi.org/10.3390/ijms21134576
-
- Johnson, D. B., Menzies, A. M., Zimmer, L., Eroglu, Z., Ye, F., Zhao, S., Rizos, H., Sucker, A., Scolyer, R. A., Gutzmer, R., Gogas, H., Kefford, R. F., Thompson, J. F., Becker, J. C., Berking, C., Egberts, F., Loquai, C., Goldinger, S. M., Pupo, G. M., … Schadendorf, D. (2015). Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. European Journal of Cancer, 51(18), 2792-2799. https://doi.org/10.1016/j.ejca.2015.08.022
-
- Kim, K. B., Kefford, R., Pavlick, A. C., Infante, J. R., Ribas, A., Sosman, J. A., Fecher, L. A., Millward, M., McArthur, G. A., Hwu, P., Gonzalez, R., Ott, P. A., Long, G. V., Gardner, O. S., Ouellet, D., Xu, Y., DeMarini, D. J., Le, N. T., Patel, K., & Lewis, K. D. (2013). Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. Journal of Clinical Oncology, 31(4), 482-489. https://doi.org/10.1200/jco.2012.43.5966
-
- Lee, J. H., Shklovskaya, E., Lim, S. Y., Carlino, M. S., Menzies, A. M., Stewart, A., Pedersen, B., Irvine, M., Alavi, S., Yang, J. Y. H., Strbenac, D., Saw, R. P. M., Thompson, J. F., Wilmott, J. S., Scolyer, R. A., Long, G. V., Kefford, R. F., & Rizos, H. (2020). Transcriptional downregulation of MHC class I and melanoma de-differentiation in resistance to PD-1 inhibition. Nature Communications, 11(1), 1897. https://doi.org/10.1038/s41467-020-15726-7
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous