Nitrogen Photoelectrochemical Reduction on TiB2 Surface Plasmon Coupling Allows Us to Reach Enhanced Efficiency of Ammonia Production
- PMID: 37614521
- PMCID: PMC10442910
- DOI: 10.1021/acscatal.3c03210
Nitrogen Photoelectrochemical Reduction on TiB2 Surface Plasmon Coupling Allows Us to Reach Enhanced Efficiency of Ammonia Production
Abstract
Ammonia is one of the most widely produced chemicals worldwide, which is consumed in the fertilizer industry and is also considered an interesting alternative in energy storage. However, common ammonia production is energy-demanding and leads to high CO2 emissions. Thus, the development of alternative ammonia production methods based on available raw materials (air, for example) and renewable energy sources is highly demanding. In this work, we demonstrated the utilization of TiB2 nanostructures sandwiched between coupled plasmonic nanostructures (gold nanoparticles and gold grating) for photoelectrochemical (PEC) nitrogen reduction and selective ammonia production. The utilization of the coupled plasmon structure allows us to reach efficient sunlight capture with a subdiffraction concentration of light energy in the space, where the catalytically active TiB2 flakes were placed. As a result, PEC experiments performed at -0.2 V (vs. RHE) and simulated sunlight illumination give the 535.2 and 491.3 μg h-1 mgcat-1 ammonia yields, respectively, with the utilization of pure nitrogen and air as a nitrogen source. In addition, a number of control experiments confirm the key role of plasmon coupling in increasing the ammonia yield, the selectivity of ammonia production, and the durability of the proposed system. Finally, we have performed a series of numerical and quantum mechanical calculations to evaluate the plasmonic contribution to the activation of nitrogen on the TiB2 surface, indicating an increase in the catalytic activity under the plasmon-generated electric field.
© 2023 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Light Entrapment by Plasmonic Chiral Lock for Enhancement of 2D Flakes Catalytic Activity.ACS Appl Mater Interfaces. 2025 Jun 4;17(22):32553-32565. doi: 10.1021/acsami.5c08060. Epub 2025 May 21. ACS Appl Mater Interfaces. 2025. PMID: 40397016 Free PMC article.
-
Free-Standing Nanoarrays with Energetic Electrons and Active Sites for Efficient Plasmon-Driven Ammonia Synthesis.Small. 2022 Jun;18(24):e2201269. doi: 10.1002/smll.202201269. Epub 2022 May 13. Small. 2022. PMID: 35567335
-
Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon.Nat Commun. 2016 Apr 20;7:11335. doi: 10.1038/ncomms11335. Nat Commun. 2016. PMID: 27093916 Free PMC article.
-
Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis.Adv Mater. 2021 Feb;33(6):e2000086. doi: 10.1002/adma.202000086. Epub 2020 Mar 23. Adv Mater. 2021. PMID: 32201994 Review.
-
Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage.Adv Mater. 2019 Aug;31(31):e1805513. doi: 10.1002/adma.201805513. Epub 2019 Feb 18. Adv Mater. 2019. PMID: 30773753 Review.
Cited by
-
Light Entrapment by Plasmonic Chiral Lock for Enhancement of 2D Flakes Catalytic Activity.ACS Appl Mater Interfaces. 2025 Jun 4;17(22):32553-32565. doi: 10.1021/acsami.5c08060. Epub 2025 May 21. ACS Appl Mater Interfaces. 2025. PMID: 40397016 Free PMC article.
-
The paradox of thermal vs. non-thermal effects in plasmonic photocatalysis.Nat Commun. 2024 Sep 12;15(1):7974. doi: 10.1038/s41467-024-51916-3. Nat Commun. 2024. PMID: 39266509 Free PMC article. Review.
References
-
- Klerke A.; Christensen C. H.; Nørskov J. K.; Vegge T. Ammonia for Hydrogen Storage: Challenges and Opportunities. J. Mater. Chem. 2008, 18, 2304–2310. 10.1039/B720020J. - DOI
-
- Chen J. G.; Crooks R. M.; Seefeldt L. C.; Bren K. L.; Bullock R. M.; Darensbourg M. Y.; Holland P. L.; Hoffman B.; Janik M. J.; Jones A. K.; Kanatzidis M. G.; King P.; Lancaster K. M.; Lymar S. V.; Pfromm P.; Schneider W. F.; Schrock R. R. Beyond Fossil Fuel–Driven Nitrogen Transformations. Science 2018, 360, eaar661110.1126/science.aar6611. - DOI - PMC - PubMed
-
- Jackson R. B.; Canadell J. G.; Le Quéré C.; Andrew R. M.; Korsbakken J. I.; Peters G. P.; Nakicenovic N. Reaching Peak Emissions. Nat. Clim. Change 2016, 6, 7–10. 10.1038/nclimate2892. - DOI
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous