Strongly Base-Two Groups
- PMID: 37621861
- PMCID: PMC10444712
- DOI: 10.1007/s10013-023-00628-0
Strongly Base-Two Groups
Abstract
Let G be a finite group, let H be a core-free subgroup and let b(G, H) denote the base size for the action of G on G/H. Let be the number of conjugacy classes of core-free subgroups H of G with . We say that G is a strongly base-two group if , which means that almost every faithful transitive permutation representation of G has base size 2. In this paper, we study the strongly base-two finite groups with trivial Frattini subgroup.
Keywords: Bases; Finite groups; Primitive groups.
© The Author(s) 2023.
References
-
- Aivazidis S, Ballester-Bolinches A. On the Frattini subgroup of a finite group. J. Algebra. 2017;470:254–262. doi: 10.1016/j.jalgebra.2016.09.010. - DOI
-
- Aschbacher, M.: Finite Group Theory. Cambridge Studies in Advanced Mathematics, vol. 10. Cambridge University Press, Cambridge (1986)
-
- Bailey RF, Cameron PJ. Base size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc. 2011;43:209–242. doi: 10.1112/blms/bdq096. - DOI
-
- Bennett MA, Skinner CM. Ternary Diophantine equations via Galois representations and modular forms. Can. J. Math. 2004;56:23–54. doi: 10.4153/CJM-2004-002-2. - DOI
-
- Bosma W, Cannon J, Playoust C. The Magma algebra system I: The user language. J. Symb. Comput. 1997;24:235–265. doi: 10.1006/jsco.1996.0125. - DOI
LinkOut - more resources
Full Text Sources