Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections
- PMID: 37626465
- DOI: 10.1002/smll.202303594
Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections
Abstract
Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.
Keywords: antibacterial activity and mechanisms; antibiotic-free disinfection; nanomaterials; physicochemical antibacterial strategy; reactive oxygen species.
© 2023 Wiley-VCH GmbH.
Similar articles
-
Enzyme Mimicry for Combating Bacteria and Biofilms.Acc Chem Res. 2018 Mar 20;51(3):789-799. doi: 10.1021/acs.accounts.8b00011. Epub 2018 Feb 28. Acc Chem Res. 2018. PMID: 29489323 Review.
-
Metal and Metal Oxide Nanomaterials for Fighting Planktonic Bacteria and Biofilms: A Review Emphasizing on Mechanistic Aspects.Int J Mol Sci. 2022 Sep 26;23(19):11348. doi: 10.3390/ijms231911348. Int J Mol Sci. 2022. PMID: 36232647 Free PMC article. Review.
-
Biocatalytic Nanomaterials: A New Pathway for Bacterial Disinfection.Adv Mater. 2021 Aug;33(33):e2100637. doi: 10.1002/adma.202100637. Epub 2021 Jul 3. Adv Mater. 2021. PMID: 34216401 Free PMC article. Review.
-
Stimuli-Activable Metal-Bearing Nanomaterials and Precise On-Demand Antibacterial Strategies.ACS Nano. 2022 Dec 27;16(12):19840-19872. doi: 10.1021/acsnano.2c08262. Epub 2022 Nov 28. ACS Nano. 2022. PMID: 36441973 Review.
-
Progress and prospects of nanomaterials against resistant bacteria.J Control Release. 2022 Nov;351:301-323. doi: 10.1016/j.jconrel.2022.09.030. Epub 2022 Sep 23. J Control Release. 2022. PMID: 36165865 Review.
Cited by
-
Facile construction of Mo-based nanozyme system via ZIF-8 templating with enhanced catalytic efficiency and antibacterial performance.Heliyon. 2024 Sep 18;10(18):e38057. doi: 10.1016/j.heliyon.2024.e38057. eCollection 2024 Sep 30. Heliyon. 2024. PMID: 39381201 Free PMC article.
-
Study of an arginine- and tryptophan-rich antimicrobial peptide in peri-implantitis.Front Bioeng Biotechnol. 2025 Jan 7;12:1486213. doi: 10.3389/fbioe.2024.1486213. eCollection 2024. Front Bioeng Biotechnol. 2025. PMID: 39840136 Free PMC article.
-
Recent advances and challenges in metal-based antimicrobial materials: a review of strategies to combat antibiotic resistance.J Nanobiotechnology. 2025 Mar 9;23(1):193. doi: 10.1186/s12951-025-03249-6. J Nanobiotechnology. 2025. PMID: 40059157 Free PMC article. Review.
-
Precise Oligomer Organization Enhanced Electrostatic Interactions for Efficient Cell Membrane Binding.Nano Lett. 2025 May 28;25(21):8488-8494. doi: 10.1021/acs.nanolett.5c00651. Epub 2025 May 16. Nano Lett. 2025. PMID: 40377435 Free PMC article.
-
Tailoring topology and bio-interactions of triazine frameworks.Sci Rep. 2024 Jun 26;14(1):14777. doi: 10.1038/s41598-024-64787-x. Sci Rep. 2024. PMID: 38926440 Free PMC article.
References
-
- E. J. Culp, N. Waglechner, W. Wang, A. A. Fiebig-Comyn, Y.-P. Hsu, K. Koteva, D. Sychantha, B. K. Coombes, M. S. Van Nieuwenhze, Y. V. Brun, G. D. Wright, Nature 2020, 578, 582.
-
- R. Aminov, Front. Microbiol. 2010, 1, 134.
-
- Y. Liu, L. Shi, L. Su, H. C. van der Mei, P. C. Jutte, Y. Ren, H. J. Busscher, Chem. Soc. Rev. 2019, 48, 428.
-
- H. C. Neu, Science 1992, 257, 1064.
-
- S. Hernando-Amado, T. M. Coque, F. Baquero, J. L. Martínez, Nat. Microbiol. 2019, 4, 1432.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials