Antibody-Drug Conjugates in Solid Tumor Oncology: An Effectiveness Payday with a Targeted Payload
- PMID: 37631374
- PMCID: PMC10459723
- DOI: 10.3390/pharmaceutics15082160
Antibody-Drug Conjugates in Solid Tumor Oncology: An Effectiveness Payday with a Targeted Payload
Abstract
Antibody-drug conjugates (ADCs) are at the forefront of the drug development revolution occurring in oncology. Formed from three main components-an antibody, a linker molecule, and a cytotoxic agent ("payload"), ADCs have the unique ability to deliver cytotoxic agents to cells expressing a specific antigen, a great leap forward from traditional chemotherapeutic approaches that cause widespread effects without specificity. A variety of payloads can be used, including most frequently microtubular inhibitors (auristatins and maytansinoids), as well as topoisomerase inhibitors and alkylating agents. Finally, linkers play a critical role in the ADCs' effect, as cleavable moieties that serve as linkers impact site-specific activation as well as bystander killing effects, an upshot that is especially important in solid tumors that often express a variety of antigens. While ADCs were initially used in hematologic malignancies, their utility has been demonstrated in multiple solid tumor malignancies, including breast, gastrointestinal, lung, cervical, ovarian, and urothelial cancers. Currently, six ADCs are FDA-approved for the treatment of solid tumors: ado-trastuzumab emtansine and trastuzumab deruxtecan, both anti-HER2; enfortumab-vedotin, targeting nectin-4; sacituzuzmab govitecan, targeting Trop2; tisotumab vedotin, targeting tissue factor; and mirvetuximab soravtansine, targeting folate receptor-alpha. Although they demonstrate utility and tolerable safety profiles, ADCs may become ineffective as tumor cells undergo evolution to avoid expressing the specific antigen being targeted. Furthermore, the current cost of ADCs can be limiting their reach. Here, we review the structure and functions of ADCs, as well as ongoing clinical investigations into novel ADCs and their potential as treatments of solid malignancies.
Keywords: agnostic targets; antibody–drug conjugates; novel therapeutics; precision oncology; solid tumors; targeted therapy.
Conflict of interest statement
A.K., S.S., A.S. and I.R. do not have conflicts to declare. R.K. has received research funding from Biological Dynamics, Boehringer Ingelheim, Debiopharm, Foundation Medicine, Genentech, Grifols, Guardant, Incyte, Konica Minolta, Medimmune, Merck Serono, Omniseq, Pfizer, Sequenom, Takeda, and TopAlliance; as well as consultant and/or speaker fees and/or advisory board for Actuate Therapeutics, AstraZeneca, Bicara Therapeutics, Biological Dynamics, Caris, Daiichi Sankyo, Inc., EISAI, EOM Pharmaceuticals, Iylon, Merck, NeoGenomics, Neomed, Pfizer, Prosperdtx, Roche, TD2/Volas tra, Turning Point Therapeutics, X-Biotech; has an equity interest in CureMatch Inc., CureMetrix, and IDbyDNA; serves on the Board of CureMatch and CureMetrix, and is a co-founder of CureMatch. J.J.A. serves on the advisory board for CureMatch, Inc.
Figures
References
-
- Norsworthy K.J., Ko C.W., Lee J.E., Liu J., John C.S., Przepiorka D., Farrell A.T., Pazdur R. FDA Approval Summary: Mylotarg for Treatment of Patients with Relapsed or Refractory CD33-Positive Acute Myeloid Leukemia. Oncologist. 2018;23:1103–1108. doi: 10.1634/theoncologist.2017-0604. - DOI - PMC - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
