Elemental analysis of vertebrae discerns diadromous movements of threatened non-marine elasmobranchs
- PMID: 37632330
- DOI: 10.1111/jfb.15537
Elemental analysis of vertebrae discerns diadromous movements of threatened non-marine elasmobranchs
Abstract
River sharks (Glyphis spp.) and some sawfishes (Pristidae) inhabit riverine environments, although their long-term habitat use patterns are poorly known. We investigated the diadromous movements of the northern river shark (Glyphis garricki), speartooth shark (Glyphis glyphis), narrow sawfish (Anoxypristis cuspidata), and largetooth sawfish (Pristis pristis) using in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on vertebrae to recover elemental ratios over each individual's lifetime. We also measured elemental ratios for the bull shark (Carcharhinus leucas) and a range of inshore and offshore stenohaline marine species to assist in interpretation of results. Barium (Ba) was found to be an effective indicator of freshwater use, whereas lithium (Li) and strontium (Sr) were effective indicators of marine water use. The relationships between Ba and Li and Ba and Sr were negatively correlated, whereas the relationship between Li and Sr was positively correlated. Both river shark species had elemental signatures indicative of prolonged use of upper-estuarine environments, whereas adults appear to mainly use lower-estuarine environments rather than marine environments. Decreases in Li:Ba and Sr:Ba at the end of the prenatal growth zone of P. pristis samples indicated that parturition likely occurs in fresh water. There was limited evidence of prolonged riverine habitat use for A. cuspidata. The results of this study support elemental-environment relationships observed in teleost otoliths and indicate that in situ LA-ICP-MS elemental characterization is applicable to a wide range of elasmobranch species as a discriminator for use and movement across salinity gradients. A greater understanding of processes that lead to element incorporation in vertebrae, and relative concentrations in vertebrae with respect to the ambient environment, will improve the applicability of elemental analysis to understand movements across the life history of elasmobranchs into the future.
Keywords: habitat use; laser ablation inductively coupled plasma mass spectrometry; life history; microchemical analysis; river sharks; sawfish.
© 2023 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles.
References
REFERENCES
-
- Adkins, M. E., Simpfendorfer, C. A., & Tobin, A. J. (2016). Large tropical fishes and their use of the nearshore littoral, intertidal and subtidal habitat mosaic. Marine and Freshwater Research, 67(10), 1534-1545. https://doi.org/10.1071/MF14339
-
- Baje, L., Smart, J. J., Grant, M. I., Chin, A., White, W. T., & Simpfendorfer, C. A. (2019). Age, growth and maturity of the Australian blackspot shark (Carcharhinus coatesi) in the Gulf of Papua. Pacific Conservation Biology, 25(4), 403-412. https://doi.org/10.1071/PC18069
-
- Bravington, M. V., Feutry, P., Pillans, R. D., Hillary, R. M., Johnson, G. J., Saunders, T., Gunasekera, R., Bax, N. J., & Kyne, P. M. (2019). Close-kin mark-recapture population size estimate of Glyphis garricki in the Northern Territory. Report to the National Environmental Science Program, Marine Biodiversity Hub. CSIRO Oceans & Atmosphere, Hobart. Available at https://www.nespmarine.edu.au/document/close-kin-mark-recapture-populati...
-
- Burke, P. J., Raoult, V., Natanson, L. J., Murphy, T. D., Peddemors, V., & Williamson, J. E. (2020). Struggling with age: Common sawsharks (Pristiophorus cirratus) defy age determination using a range of traditional methods. Fisheries Research, 231, 105706. https://doi.org/10.1016/j.fishres.2020.105706
-
- Cailliet, G. M., & Goldman, K. J. (2004). Age determination and validation in chondrichthyan fishes. In J. Carrier, J. Musick, & M. Heithaus (Eds.), Biology of sharks and their relatives (pp. 399-447). CRC Press.
MeSH terms
Substances
Supplementary concepts
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous