Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 26;27(1):328.
doi: 10.1186/s13054-023-04617-0.

Neuropsychological outcome after cardiac arrest: results from a sub-study of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial

Affiliations

Neuropsychological outcome after cardiac arrest: results from a sub-study of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial

Erik Blennow Nordström et al. Crit Care. .

Abstract

Background: Cognitive impairment is common following out-of-hospital cardiac arrest (OHCA), but the nature of the impairment is poorly understood. Our objective was to describe cognitive impairment in OHCA survivors, with the hypothesis that OHCA survivors would perform significantly worse on neuropsychological tests of cognition than controls with acute myocardial infarction (MI). Another aim was to investigate the relationship between cognitive performance and the associated factors of emotional problems, fatigue, insomnia, and cardiovascular risk factors following OHCA.

Methods: This was a prospective case-control sub-study of The Targeted Hypothermia versus Targeted Normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trial. Eight of 61 TTM2-sites in Sweden, Denmark, and the United Kingdom included adults with OHCA of presumed cardiac or unknown cause. A matched non-arrest control group with acute MI was recruited. At approximately 7 months post-event, we administered an extensive neuropsychological test battery and questionnaires on anxiety, depression, fatigue, and insomnia, and collected information on the cardiovascular risk factors hypertension and diabetes.

Results: Of 184 eligible OHCA survivors, 108 were included, with 92 MI controls enrolled. Amongst OHCA survivors, 29% performed z-score ≤ - 1 (at least borderline-mild impairment) in ≥ 2 cognitive domains, 14% performed z-score ≤ - 2 (major impairment) in ≥ 1 cognitive domain while 54% performed without impairment in any domain. Impairment was most pronounced in episodic memory, executive functions, and processing speed. OHCA survivors performed significantly worse than MI controls in episodic memory (mean difference, MD = - 0.37, 95% confidence intervals [- 0.61, - 0.12]), verbal (MD = - 0.34 [- 0.62, - 0.07]), and visual/constructive functions (MD = - 0.26 [- 0.47, - 0.04]) on linear regressions adjusted for educational attainment and sex. When additionally adjusting for anxiety, depression, fatigue, insomnia, hypertension, and diabetes, executive functions (MD = - 0.44 [- 0.82, - 0.06]) were also worse following OHCA. Diabetes, symptoms of anxiety, depression, and fatigue were significantly associated with worse cognitive performance.

Conclusions: In our study population, cognitive impairment was generally mild following OHCA. OHCA survivors performed worse than MI controls in 3 of 6 domains. These results support current guidelines that a post-OHCA follow-up service should screen for cognitive impairment, emotional problems, and fatigue.

Trial registration: ClinicalTrials.gov, NCT03543371. Registered 1 June 2018.

Keywords: Cardiovascular disease; Cognitive impairment; Heart arrest; Hypoxic-ischemic encephalopathy; Myocardial infarction; Outcome.

PubMed Disclaimer

Conflict of interest statement

The authors report no competing interests with respect to the research, authorship, and/or publication of this article.

Figures

Fig. 1
Fig. 1
Flowchart of included out-of-hospital cardiac arrest survivors and acute myocardial infarction controls
Fig. 2
Fig. 2
Number of cognitive domains (0–6) with cognitive impairment in of out-of-hospital cardiac arrest (OHCA) survivors and myocardial infarction (MI) controls, n (%). At least borderline–mild impairment (z ≤ -1) in A, major impairment (z ≤ -2) in B. Key in the bottom
Fig. 3
Fig. 3
Result distribution on the neuropsychological composite scores (a–f) with of out-of-hospital cardiac arrest (OHCA) survivors and myocardial infarction (MI) controls, as well as assumed distribution in non-clinical groups according to population norms (g). Key with standard deviations (SD) on the lower right

References

    1. Yan S, Gan Y, Jiang N, Wang R, Chen Y, Luo Z, Zong Q, Chen S, Lv C. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care. 2020;24(1):61. doi: 10.1186/s13054-020-2773-2. - DOI - PMC - PubMed
    1. Boyce LW, Goossens PH. Rehabilitation after cardiac arrest: integration of neurologic and cardiac rehabilitation. Semin Neurol. 2017;37(01):094–102. doi: 10.1055/s-0036-1593860. - DOI - PubMed
    1. Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med. 2021;47(12):1393–1414. doi: 10.1007/s00134-021-06548-2. - DOI - PMC - PubMed
    1. Moulaert VRMP, Verbunt JA, van Heugten CM, Wade DT. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2009;80(3):297–305. doi: 10.1016/j.resuscitation.2008.10.034. - DOI - PubMed
    1. Zook N, Voss S, Blennow Nordström E, Brett SJ, Jenkinson E, Shaw P, White P, Benger J. Neurocognitive function following out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2022;170:238–246. doi: 10.1016/j.resuscitation.2021.10.005. - DOI - PubMed

Associated data