Analysis of tissue lipidomics and computed tomography pulmonary fat attenuation volume (CTPFAV ) in idiopathic pulmonary fibrosis
- PMID: 37642207
- DOI: 10.1111/resp.14582
Analysis of tissue lipidomics and computed tomography pulmonary fat attenuation volume (CTPFAV ) in idiopathic pulmonary fibrosis
Abstract
Background and objective: There is increasing interest in the role of lipids in processes that modulate lung fibrosis with evidence of lipid deposition in idiopathic pulmonary fibrosis (IPF) histological specimens. The aim of this study was to identify measurable markers of pulmonary lipid that may have utility as IPF biomarkers.
Study design and methods: IPF and control lung biopsy specimens were analysed using a unbiased lipidomic approach. Pulmonary fat attenuation volume (PFAV) was assessed on chest CT images (CTPFAV ) with 3D semi-automated lung density software. Aerated lung was semi-automatically segmented and CTPFAV calculated using a Hounsfield-unit (-40 to -200HU) threshold range expressed as a percentage of total lung volume. CTPFAV was compared to pulmonary function, serum lipids and qualitative CT fibrosis scores.
Results: There was a significant increase in total lipid content on histological analysis of IPF lung tissue (23.16 nmol/mg) compared to controls (18.66 mol/mg, p = 0.0317). The median CTPFAV in IPF was higher than controls (1.34% vs. 0.72%, p < 0.001) and CTPFAV correlated significantly with DLCO% predicted (R2 = 0.356, p < 0.0001) and FVC% predicted (R2 = 0.407, p < 0.0001) in patients with IPF. CTPFAV correlated with CT features of fibrosis; higher CTPFAV was associated with >10% reticulation (1.6% vs. 0.94%, p = 0.0017) and >10% honeycombing (1.87% vs. 1.12%, p = 0.0003). CTPFAV showed no correlation with serum lipids.
Conclusion: CTPFAV is an easily quantifiable non-invasive measure of pulmonary lipids. In this pilot study, CTPFAV correlates with pulmonary function and radiological features of IPF and could function as a potential biomarker for IPF disease severity assessment.
Keywords: idiopathic pulmonary fibrosis; interstitial lung disease; lipidomics; pulmonary fat; quantitative CT.
© 2023 The Authors. Respirology published by John Wiley & Sons Australia, Ltd on behalf of Asian Pacific Society of Respirology.
References
REFERENCES
-
- Barratt SL, Creamer A, Hayton C, Chaudhuri N. Idiopathic pulmonary fibrosis (IPF): an overview. J Clin Med. 2018;7:201.
-
- Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 2017;3:17074.
-
- Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2018;198:e44-e68.
-
- Lynch DA, Sverzellati N, Travis WD, Brown KK, Colby TV, Galvin JR, et al. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med. 2018;6:138-153.
-
- Plantier L, Cazes A, Dinh-Xuan AT, Bancal C, Marchand-Adam S, Crestani B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev. 2018;27:170062.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
