H19 in Serum Extracellular Vesicles Reflects Resistance to AR Axis-targeted Therapy Among CRPC Patients
- PMID: 37643783
- PMCID: PMC10464938
- DOI: 10.21873/cgp.20397
H19 in Serum Extracellular Vesicles Reflects Resistance to AR Axis-targeted Therapy Among CRPC Patients
Abstract
Background/aim: We aimed to evaluate the changes of androgen receptor (AR) signaling-related long non-coding RNAs (lncRNAs) in serum extracellular vesicles (EVs) from prostate cancer (PC) patients, in order to identify novel biomarkers for AR axis-targeted therapy (ARAT)-resistance among castration-resistant PC (CRPC) patients.
Patients and methods: EVs were isolated from 2 patients before and after acquiring ARAT-resistance. RNA profiling of EVs was performed by RNA-sequencing. The expression levels of selected lncRNAs in EVs were analyzed by digital droplet PCR (ddPCR) in 58 localized and 14 metastatic PC patients at diagnosis, 7 ARAT-naïve and 6 ARAT-resistant CRPC patients. LncRNA H19 expression in PC tissue was examined using published data. In order to analyze the role of H19, the prognosis was analyzed in PC patients and proteomic analysis was performed in 22Rv1 PC cells.
Results: RNA-sequencing revealed that AR-regulated RNAs were most enriched in EVs after acquiring ARAT-resistance. Among them, up-regulation of AR signaling-related lncRNAs (PCAT1, H19, HOXA-11AS, ZEB1-AS1, ARLNC1, PART1, CTBP1-AS and PCA3) was confirmed by ddPCR. H19 contained in EVs (EV-H19) was significantly increased among ARAT-resistant patients compared to ARAT-naïve CRPC or metastatic PC patients. In PC tissue, H19 was negatively correlated with AR protein and AR-activity score and up-regulated in neuroendocrine CRPC tissue with low AR expression. Furthermore, EV-H19 expression was significantly associated with worse outcome to androgen-deprivation therapy. Proteomic analysis demonstrated that H19 knockdown enhanced PC-related protein expression.
Conclusion: EV-H19 may negatively correlate with AR-signaling activity and could be a marker to diagnose ARAT-resistance among CRPC patients.
Keywords: CRPC; H19; Prostate cancer; RNA-sequencing; androgen receptor axis-targeted therapy; extracellular vesicles.
Copyright © 2023, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Conflict of interest statement
The Authors declare that there are no conflicts of interest in this study.
Figures
References
-
- Schaeffer EM, Srinivas S, Adra N, An Y, Barocas D, Bitting R, Bryce A, Chapin B, Cheng HH, D’Amico AV, Desai N, Dorff T, Eastham JA, Farrington TA, Gao X, Gupta S, Guzzo T, Ippolito JE, Kuettel MR, Lang JM, Lotan T, McKay RR, Morgan T, Netto G, Pow-Sang JM, Reiter R, Roach M, Robin T, Rosenfeld S, Shabsigh A, Spratt D, Teply BA, Tward J, Valicenti R, Wong JK, Berardi RA, Shead DA, Freedman-Cass DA. NCCN guidelines(R) insights: Prostate cancer, version 1.2023. J Natl Compr Canc Netw. 2022;20(12):1288–1298. doi: 10.6004/jnccn.2022.0063. - DOI - PubMed
-
- Zhao SG, Sperger JM, Schehr JL, McKay RR, Emamekhoo H, Singh A, Schultz ZD, Bade RM, Stahlfeld CN, Gilsdorf CS, Hernandez CI, Wolfe SK, Mayberry RD, Krause HM, Bootsma M, Helzer KT, Rydzewski N, Bakhtiar H, Shi Y, Blitzer G, Kyriakopoulos CE, Kosoff D, Wei XX, Floberg J, Sethakorn N, Sharifi M, Harari PM, Huang W, Beltran H, Choueiri TK, Scher HI, Rathkopf DE, Halabi S, Armstrong AJ, Beebe DJ, Yu M, Sundling KE, Taplin ME, Lang JM. A clinical-grade liquid biomarker detects neuroendocrine differentiation in prostate cancer. J Clin Invest. 2022;132(21):e161858. doi: 10.1172/JCI161858. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials