Block Copolymer-Templated, Single-Step Synthesis of Transition Metal Oxide Nanostructures for Sensing Applications
- PMID: 37644616
- PMCID: PMC10739603
- DOI: 10.1021/acsami.3c10439
Block Copolymer-Templated, Single-Step Synthesis of Transition Metal Oxide Nanostructures for Sensing Applications
Abstract
The synthesis of transition metal oxide nanostructures, thanks to their high surface-to-volume ratio and the resulting large fraction of surface atoms with high catalytic activity, is of prime importance for the development of new sensors and catalytic materials. Here, we report an economical, time-efficient, and easily scalable method of fabricating nanowires composed of vanadium, chromium, manganese, iron, and cobalt oxides by employing simultaneous block copolymer (BCP) self-assembly and selective sequestration of metal-organic acetylacetonate complexes within one of the BCP blocks. We discuss the mechanism and the primary factors that are responsible for the sequestration and conformal replication of the BCP template by the inorganic material that is obtained after the polymer template is removed. X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (PXRD) studies indicate that the metal oxidation state in the nanowires produced by plasma ashing the BCP template closely matches that of the precursor complex and that their structure is amorphous, thus requiring high-temperature annealing in order to sinter them into a crystalline form. Finally, we demonstrate how the developed nanowire array fabrication scheme can be used to rapidly pattern a multilayered iron oxide nanomesh, which we then used to construct a prototype volatile organic compound sensor.
Keywords: block copolymers; directed self-assembly; gas sensors; solvent evaporation annealing; transition metal oxide nanowires.
Conflict of interest statement
The authors declare no competing financial interest.
Figures







Similar articles
-
Highly Ordered Porous Inorganic Structures via Block Copolymer Lithography: An Application of the Versatile and Selective Infiltration of the "Inverse" P2VP-b-PS System.ACS Appl Mater Interfaces. 2022 Aug 3;14(30):35265-35275. doi: 10.1021/acsami.2c10338. Epub 2022 Jul 25. ACS Appl Mater Interfaces. 2022. PMID: 35876355
-
Pattern formation of metal-oxide hybrid nanostructures via the self-assembly of di-block copolymer blends.Nanoscale. 2019 Oct 28;11(40):18559-18567. doi: 10.1039/c9nr04038b. Epub 2019 Jul 25. Nanoscale. 2019. PMID: 31342044
-
sp2-Hybridized Carbon-Containing Block Copolymer Templated Synthesis of Mesoporous Semiconducting Metal Oxides with Excellent Gas Sensing Property.Acc Chem Res. 2019 Mar 19;52(3):714-725. doi: 10.1021/acs.accounts.8b00598. Epub 2019 Mar 4. Acc Chem Res. 2019. PMID: 30829473
-
Fabrication routes for one-dimensional nanostructures via block copolymers.Nano Converg. 2017;4(1):12. doi: 10.1186/s40580-017-0106-1. Epub 2017 May 10. Nano Converg. 2017. PMID: 28546902 Free PMC article. Review.
-
Templated Growth of Crystalline Mesoporous Materials: From Soft/Hard Templates to Colloidal Templates.Front Chem. 2019 Jan 30;7:22. doi: 10.3389/fchem.2019.00022. eCollection 2019. Front Chem. 2019. PMID: 30805330 Free PMC article. Review.
Cited by
-
An Overview of Electrochemical Sensors Based on Transition Metal Carbides and Oxides: Synthesis and Applications.Micromachines (Basel). 2023 Dec 24;15(1):42. doi: 10.3390/mi15010042. Micromachines (Basel). 2023. PMID: 38258161 Free PMC article. Review.
-
Printed Thin Magnetic Films via Ternary Hybrid Diblock Copolymer Films Containing Magnetic Iron Oxide and Nickel Nanoparticles.ACS Appl Mater Interfaces. 2024 Dec 25;16(51):71060-71069. doi: 10.1021/acsami.4c18920. Epub 2024 Dec 11. ACS Appl Mater Interfaces. 2024. PMID: 39661934 Free PMC article.
-
Enabling data-driven design of block copolymer self-assembly.Sci Data. 2025 Jun 21;12(1):1055. doi: 10.1038/s41597-025-05379-w. Sci Data. 2025. PMID: 40544169 Free PMC article.
References
-
- Mirzaei A.; Ansari H. R.; Shahbaz M.; Kim J.-Y.; Kim H. W.; Kim S. S. Metal Oxide Semiconductor Nanostructure Gas Sensors with Different Morphologies. Chemosensors 2022, 10 (7), 289.10.3390/chemosensors10070289. - DOI
-
- Botiz I.; Darling S. B. Optoelectronics Using Block Copolymers. Mater. Today 2010, 13 (5), 42–51. 10.1016/S1369-7021(10)70083-3. - DOI
-
- Kim J. H.; Jin H. M.; Yang G. G.; Han K. H.; Yun T.; Shin J. Y.; Jeong S.; Kim S. O. Smart Nanostructured Materials Based on Self-Assembly of Block Copolymers. Adv. Funct. Mater. 2020, 30 (2), 190204910.1002/adfm.201902049. - DOI
-
- Chen Y.; Xiong S. Directed Self-Assembly of Block Copolymers for Sub-10 Nm Fabrication. Int. J. Extrem. Manuf. 2020, 2 (3), 03200610.1088/2631-7990/aba3ae. - DOI
Publication types
LinkOut - more resources
Full Text Sources