Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 26;42(9):113043.
doi: 10.1016/j.celrep.2023.113043. Epub 2023 Aug 30.

The malate-aspartate shuttle is important for de novo serine biosynthesis

Affiliations
Free article

The malate-aspartate shuttle is important for de novo serine biosynthesis

Melissa H Broeks et al. Cell Rep. .
Free article

Abstract

The malate-aspartate shuttle (MAS) is a redox shuttle that transports reducing equivalents across the inner mitochondrial membrane while recycling cytosolic NADH to NAD+. We genetically disrupted each MAS component to generate a panel of MAS-deficient HEK293 cell lines in which we performed [U-13C]-glucose tracing. MAS-deficient cells have reduced serine biosynthesis, which strongly correlates with the lactate M+3/pyruvate M+3 ratio (reflective of the cytosolic NAD+/NADH ratio), consistent with the NAD+ dependency of phosphoglycerate dehydrogenase in the serine synthesis pathway. Among the MAS-deficient cells, those lacking malate dehydrogenase 1 (MDH1) show the most severe metabolic disruptions, whereas oxoglutarate-malate carrier (OGC)- and MDH2-deficient cells are less affected. Increasing the NAD+-regenerating capacity using pyruvate supplementation resolves most of the metabolic disturbances. Overall, we show that the MAS is important for de novo serine biosynthesis, implying that serine supplementation could be used as a therapeutic strategy for MAS defects and possibly other redox disorders.

Keywords: CP: Metabolism; NADH shuttle; central carbon metabolism; glycolysis; isotope-tracer analysis; malate dehydrogenase; malate-aspartate shuttle; metabolomics; serine biosynthesis.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Publication types

LinkOut - more resources