Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar;31(3):870-879.
doi: 10.1016/j.acra.2023.07.024. Epub 2023 Aug 28.

Automated Assessment of T2-Weighted MRI to Differentiate Malignant and Benign Primary Solid Liver Lesions in Noncirrhotic Livers Using Radiomics

Affiliations
Free article

Automated Assessment of T2-Weighted MRI to Differentiate Malignant and Benign Primary Solid Liver Lesions in Noncirrhotic Livers Using Radiomics

Martijn P A Starmans et al. Acad Radiol. 2024 Mar.
Free article

Abstract

Rationale and objectives: Distinguishing malignant from benign liver lesions based on magnetic resonance imaging (MRI) is an important but often challenging task, especially in noncirrhotic livers. We developed and externally validated a radiomics model to quantitatively assess T2-weighted MRI to distinguish the most common malignant and benign primary solid liver lesions in noncirrhotic livers.

Materials and methods: Data sets were retrospectively collected from three tertiary referral centers (A, B, and C) between 2002 and 2018. Patients with malignant (hepatocellular carcinoma and intrahepatic cholangiocarcinoma) and benign (hepatocellular adenoma and focal nodular hyperplasia) lesions were included. A radiomics model based on T2-weighted MRI was developed in data set A using a combination of machine learning approaches. The model was internally evaluated on data set A through cross-validation, externally validated on data sets B and C, and compared to visual scoring of two experienced abdominal radiologists on data set C.

Results: The overall data set included 486 patients (A: 187, B: 98, and C: 201). The radiomics model had a mean area under the curve (AUC) of 0.78 upon internal validation on data set A and a similar AUC in external validation (B: 0.74 and C: 0.76). In data set C, the two radiologists showed moderate agreement (Cohen's κ: 0.61) and achieved AUCs of 0.86 and 0.82.

Conclusion: Our T2-weighted MRI radiomics model shows potential for distinguishing malignant from benign primary solid liver lesions. External validation indicated that the model is generalizable despite substantial MRI acquisition protocol differences. Pending further optimization and generalization, this model may aid radiologists in improving the diagnostic workup of patients with liver lesions.

Keywords: Hepatocellular carcinoma; Liver cancer; Machine learning; Magnetic resonance imaging.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest W.J.N. is the founder and shareholder of Quantib BV. The other authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Publication types

LinkOut - more resources