Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 29;7(1):1713.
doi: 10.23889/ijpds.v7i1.1713. eCollection 2022.

Evaluating the accuracy of data extracted from electronic health records into MedicineInsight, a national Australian general practice database

Affiliations

Evaluating the accuracy of data extracted from electronic health records into MedicineInsight, a national Australian general practice database

Benjamin Daniels et al. Int J Popul Data Sci. .

Abstract

Introduction: MedicineInsight is a database containing de-identified electronic health records (EHRs) from over 700 Australian general practices. Previous research validated algorithms used to derive medical condition flags in MedicineInsight, but the accuracy of data fields following EHR extractions from clinical practices and data warehouse transformation processes have not been formally validated.

Objectives: To examine the accuracy of the extraction and transformation of EHR fields for selected demographics, observations, diagnoses, prescriptions, and tests into MedicineInsight.

Methods: We benchmarked MedicineInsight values against those recorded in original EHRs. Forty-six general practices contributing data to MedicineInsight met our eligibility criteria, eight were randomly selected, and four agreed to participate. We randomly selected 200 patients >18 years of age within each participating practice from MedicineInsight. Trained staff reviewed the original EHRs for the selected patients and recorded data from the relevant fields. We calculated the percentage of agreement (POA) between MedicineInsight and EHR data for all fields; Cohen's Kappa for categorical and intra-class correlation (ICC) for continuous measures; and sensitivity, specificity, and positive and negative predictive values (PPV/NPV) for diagnoses.

Results: A total of 796 patients were included in our analysis. All demographic characteristics, observations, diagnoses, prescriptions and random pathology test results had excellent (>90%) POA, Kappa, and ICC. POA for most recent pathology/imaging test was moderate (81%, [95% CI: 78% to 84%]). Sensitivity, specificity, PPV, and NPV were excellent (>90%) for all but one of the examined diagnoses which had a poor PPV.

Conclusions: Overall, our study shows good agreement between the majority of MedicineInsight data and those from original EHRs, suggesting MedicineInsight data extraction and warehousing procedures accurately conserve the data in these key fields. Discrepancies between test data may have arisen due to how data from pathology, radiology and other imaging providers are stored in EHRs and MedicineInsight and this requires further investigation.

Keywords: electronic health records; primary care; validation.

PubMed Disclaimer

Conflict of interest statement

Statement on conflicts of interest: All authors are employees or collaborators of NPS MedicineWise, the custodian of the MedicineInsight data. The Centre for Big Data Research in Health, UNSW Sydney received funding from AbbVie Australia in 2020 to conduct research, unrelated to the present study.

Figures

Figure 1: MedicineInsight electronic health record (EHR) data extraction, transformation, warehousing, and reporting procedures
Figure 1: MedicineInsight electronic health record (EHR) data extraction, transformation, warehousing, and reporting procedures

References

    1. Campanella P, Lovato E, Marone C, Fallacara L, Mancuso A, Ricciardi W, et al. The impact of electronic health records on healthcare quality: a systematic review and meta-analysis. Eur J Public Health. 2016;26(1):60–4. 10.1093/eurpub/ckv122 - DOI - PubMed
    1. Nguyen L, Bellucci E, Nguyen LT. Electronic health records implementation: an evaluation of information system impact and contingency factors. Int J Med Inform. 2014;83(11):779–96. 10.1016/j.ijmedinf.2014.06.011 - DOI - PubMed
    1. Gentil ML, Cuggia M, Fiquet L, Hagenbourger C, Le Berre T, Banâtre A, et al. Factors influencing the development of primary care data collection projects from electronic health records: a systematic review of the literature. BMC Med Inform Decis Mak. 2017;17(1):139. 10.1186/s12911-017-0538-x - DOI - PMC - PubMed
    1. Liaw ST, Taggart J, Yu H, de Lusignan S. Data extraction from electronic health records - existing tools may be unreliable and potentially unsafe. Aust Fam Physician. 2013;42(11):820–3. - PubMed
    1. Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al. Data Resource Profile: Clinical Practice Research Datalink (CPRD). International Journal of Epidemiology. 2015;44(3):827–36. 10.1093/ije/dyv098 - DOI - PMC - PubMed

Publication types

LinkOut - more resources