Photomanipulation of Minimal Synthetic Cells: Area Increase, Softening, and Interleaflet Coupling of Membrane Models Doped with Azobenzene-Lipid Photoswitches
- PMID: 37653602
- PMCID: PMC10625111
- DOI: 10.1002/advs.202304336
Photomanipulation of Minimal Synthetic Cells: Area Increase, Softening, and Interleaflet Coupling of Membrane Models Doped with Azobenzene-Lipid Photoswitches
Abstract
Light can effectively interrogate biological systems in a reversible and physiologically compatible manner with high spatiotemporal precision. Understanding the biophysics of photo-induced processes in bio-systems is crucial for achieving relevant clinical applications. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), a holistic picture of light-triggered changes in membrane kinetics, morphology, and material properties obtained from correlative studies on cell-sized vesicles, Langmuir monolayers, supported lipid bilayers, and molecular dynamics simulations is provided. Light-induced membrane area increases as high as ≈25% and a ten-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization associated with membrane leaflet coupling and molecular curvature changes. Vesicle electrodeformation measurements and atomic force microscopy reveal that trans azo-PC bilayers are thicker than palmitoyl-oleoyl phosphatidylcholine (POPC) bilayers but have higher specific membrane capacitance and dielectric constant suggesting an increased ability to store electric charges across the membrane. Lastly, incubating POPC vesicles with azo-PC solutions results in the insertion of azo-PC in the membrane enabling them to become photoresponsive. All these results demonstrate that light can be used to finely manipulate the shape, mechanical and electric properties of photolipid-doped minimal cell models, and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders.
Keywords: atomic force microscopy (AFM); azo-PC; bending rigidity; giant vesicles; membrane capacitance; molecular dynamics simulations; photoswitchable lipids.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
Fully atomistic molecular dynamics modeling of photoswitchable azo-PC lipid bilayers: structure, mechanical properties, and drug permeation.Nanoscale. 2025 Jan 23;17(4):2032-2042. doi: 10.1039/d4nr02509a. Nanoscale. 2025. PMID: 39641529
-
Light-Controlled Membrane Mechanics and Shape Transitions of Photoswitchable Lipid Vesicles.Langmuir. 2017 Apr 25;33(16):4083-4089. doi: 10.1021/acs.langmuir.7b01020. Epub 2017 Apr 12. Langmuir. 2017. PMID: 28361538
-
Optical Membrane Control with Red Light Enabled by Red-Shifted Photolipids.Langmuir. 2022 Jan 11;38(1):385-393. doi: 10.1021/acs.langmuir.1c02745. Epub 2021 Dec 31. Langmuir. 2022. PMID: 34969246
-
Mechanical characterization of vesicles and cells: A review.Electrophoresis. 2020 Apr;41(7-8):449-470. doi: 10.1002/elps.201900362. Epub 2020 Feb 3. Electrophoresis. 2020. PMID: 31967658 Free PMC article. Review.
-
Nanodiscs bounded by styrene-maleic acid allow trans-cis isomerization of enclosed photoswitches of azobenzene labeled lipids.Chem Phys Lipids. 2019 May;220:1-5. doi: 10.1016/j.chemphyslip.2019.02.002. Epub 2019 Feb 16. Chem Phys Lipids. 2019. PMID: 30779906 Review.
Cited by
-
Rotaxanes with a photoresponsive macrocycle modulate the lipid bilayers of large and giant unilamellar vesicles.Commun Chem. 2024 Nov 8;7(1):255. doi: 10.1038/s42004-024-01343-8. Commun Chem. 2024. PMID: 39516242 Free PMC article.
-
Photoswitchable phospholipids for the optical control of membrane processes, protein function, and drug delivery.Commun Mater. 2025;6(1):59. doi: 10.1038/s43246-025-00773-8. Epub 2025 Apr 1. Commun Mater. 2025. PMID: 40182703 Free PMC article. Review.
-
Transient infrared nanoscopy resolves the millisecond photoswitching dynamics of single lipid vesicles in water.Nat Commun. 2025 Jul 1;16(1):6033. doi: 10.1038/s41467-025-61341-9. Nat Commun. 2025. PMID: 40593745 Free PMC article.
-
Photoswitchable Endocytosis of Biomolecular Condensates in Giant Vesicles.Adv Sci (Weinh). 2024 Jun;11(23):e2309864. doi: 10.1002/advs.202309864. Epub 2024 Apr 6. Adv Sci (Weinh). 2024. PMID: 38582523 Free PMC article.
-
Photoswitchable Molecular Motor Phospholipid: Synthesis, Characterization, and Integration into Lipid Vesicles.Langmuir. 2025 Feb 18;41(6):3961-3970. doi: 10.1021/acs.langmuir.4c04173. Epub 2025 Feb 3. Langmuir. 2025. PMID: 39900533 Free PMC article.
References
-
- a) Masiero S., Lena S., Pieraccini S., Spada G. P., Angew. Chem., Int. Ed. 2008, 47, 3184; - PubMed
- b) Wang Z., Erhart P., Li T., Zhang Z.‐Y., Sampedro D., Hu Z., Wegner H. A., Brummel O., Libuda J., Nielsen M. B., Moth‐Poulsen K., Joule 2021, 5, 3116.
-
- Baigl D., Lab Chip 2012, 12, 3637. - PubMed
-
- Palacci J., Sacanna S., Vatchinsky A., Chaikin P. M., Pine D. J., J. Am. Chem. Soc. 2013, 135, 15978. - PubMed
-
- Mallick A., Roy S., Nanoscale 2018, 10, 12713. - PubMed
-
- Pacheco M., Jurado‐Sánchez B., Escarpa A., Angew. Chem., Int. Ed. 2019, 58, 18017. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous