Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Sep 18;52(18):6359-6378.
doi: 10.1039/d3cs00328k.

The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability

Affiliations
Review

The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability

Renato L de Carvalho et al. Chem Soc Rev. .

Abstract

Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Overview.
Scheme 2
Scheme 2. Overview of Ag-assisted [Ru]-catalyzed C–H activations.
Scheme 3
Scheme 3. Ruthenium-catalyzed distal C–H alkenylation.
Scheme 4
Scheme 4. Ruthenium-catalyzed C–H acyloxylation.
Scheme 5
Scheme 5. Ruthenium-catalyzed C–H alkylation with double enantio-induction.
Scheme 6
Scheme 6. Overview of Ag-assisted [Rh]-catalyzed C–H activations.
Scheme 7
Scheme 7. Rhodium-catalyzed C–H alkylation.
Scheme 8
Scheme 8. Rhodium-catalyzed C–H activation with bifocal use of AgSbF6.
Scheme 9
Scheme 9. Overview of Ag-assisted [Ir]-catalyzed C–H activations.
Scheme 10
Scheme 10. Iridium-catalyzed C–H alkenylation.
Scheme 11
Scheme 11. Iridium-catalyzed C–H alkenylation vs alkylation guided by directing groups.
Scheme 12
Scheme 12. Iridium-catalyzed amination using aliphatic primary amines.
Scheme 13
Scheme 13. Iridium-catalyzed C–H amidation/aza-Michael addition cascade.
Scheme 14
Scheme 14. Overview of Ag-assisted [Pd]-catalyzed C–H activations.
Scheme 15
Scheme 15. Ag-assisted [Pd]-catalyzed C–H alkynylation.
Scheme 16
Scheme 16. Overview of Ag-assisted [Co]-catalyzed C–H activations.
Scheme 17
Scheme 17. Cobalt-catalyzed C–H allylation with vinylaziridines.
Scheme 18
Scheme 18. Cobalt-catalyzed C–H amidation.
Scheme 19
Scheme 19. Cobalt-catalyzed enantioselective C–H alkylation.
Scheme 20
Scheme 20. Electrooxidative ruthenium-catalyzed annulation.
Scheme 21
Scheme 21. Rhodaelectro-catalyzed Ag-free C–H alkenylation of arylcarboxylic acids.
Scheme 22
Scheme 22. Rhodaelectro-catalyzed Ag-free C–H alkenylation of naphthols.
Scheme 23
Scheme 23. Rhodium-catalyzed Ag-free C–H annulation of anilines.
Scheme 24
Scheme 24. Cobalt-catalyzed Ag-free C–H alkenylation/annulation of indoles.
Scheme 25
Scheme 25. Overcoming the limitation of strongly coordinating N-heterocyles through Co(iii)-catalysis.
Scheme 26
Scheme 26. Late-stage functionalization of peptides with Co(iii)-catalysis.
Scheme 27
Scheme 27. Nickel/paladium-nanocatalyzed Ag-free C–H arylation of imidazopyridine derivatives.
None
Renato L. de Carvalho
None
Emilay B. T. Diogo
None
Simon L. Homölle
None
Suman Dana
None
Eufrânio N. da Silva Júnior
None
Lutz Ackermann

Similar articles

Cited by

References

    1. Rogge T. Kaplaneris N. Chatani N. Kim J. Chang S. Punji B. Schafer L. L. Musaev D. G. Wencel-Delord J. Roberts C. A. Sarpong R. Wilson Z. E. Brimble M. A. Johansson M. J. Ackermann L. Nature Rev. Meth. Primers. 2021;1:43. doi: 10.1038/s43586-021-00041-2. - DOI
    2. Yoshino T. Matsunaga S. ACS Catal. 2021;11:6455–6466. doi: 10.1021/acscatal.1c01351. - DOI
    3. Gandeepan P. Finger L. H. Meyer T. H. Ackermann L. Chem. Soc. Rev. 2020;49:4254–4272. doi: 10.1039/D0CS00149J. - DOI - PubMed
    4. Li X. Ouyang W. Nie J. Ji S. Chen Q. Huo Y. ChemCatChem. 2020;12:2358–2384. doi: 10.1002/cctc.201902150. - DOI
    5. Gandeepan P. Müller T. Zell D. Cera G. Warratz S. Ackermann L. Chem. Rev. 2019;119:2192–2452. doi: 10.1021/acs.chemrev.8b00507. - DOI - PubMed
    6. Liu W. Ackermann L. ACS Catal. 2016;6:3743–3752. doi: 10.1021/acscatal.6b00993. - DOI
    7. Li S. S. Qin L. Dong L. Org. Biomol. Chem. 2016;14:4554–4570. doi: 10.1039/C6OB00209A. - DOI - PubMed
    8. Khan F. F. Sinha S. K. Lahiri G. K. Maiti D. Chem. Asian J. 2018;13:2243–2256. doi: 10.1002/asia.201800545. - DOI - PubMed
    9. Moselage M. Li J. Ackermann L. ACS Catal. 2016;6:498–525. doi: 10.1021/acscatal.5b02344. - DOI
    10. Ackermann L. Acc. Chem. Res. 2014;47:281–295. doi: 10.1021/ar3002798. - DOI - PubMed
    11. De Sarkar S. Liu W. Kozhushkov S. I. Ackermann L. Adv. Synth. Catal. 2014;356:1461–1479. doi: 10.1002/adsc.201400110. - DOI
    12. Ackermann L. Acc. Chem. Res. 2014;47:281–295. doi: 10.1021/ar3002798. - DOI - PubMed
    13. Kozhushkov S. I. Ackermann L. Chem. Sci. 2013;4:886–896. doi: 10.1039/C2SC21524A. - DOI
    14. Kuhl N. Hopkinson M. N. Wencel-Delord J. Glorius F. Angew. Chem., Int. Ed. 2012;51:10236–10254. doi: 10.1002/anie.201203269. - DOI - PubMed
    15. Arockiam P. B. Bruneau C. Dixneuf P. H. Chem. Rev. 2012;112:5879–5918. doi: 10.1021/cr300153j. - DOI - PubMed
    16. Ackermann L. Chem. Rev. 2011;111:1315–1345. doi: 10.1021/cr100412j. - DOI - PubMed
    17. Deb A. Manna S. Modak A. Patra T. Maity S. Maiti D. Angew. Chem., Int. Ed. 2013;52:9747–9750. doi: 10.1002/anie.201303576. - DOI - PubMed
    18. Maity S. Manna S. Rana S. Naveen T. Mallick A. Maiti D. J. Am. Chem. Soc. 2013;135:3355–3358. doi: 10.1021/ja311942e. - DOI - PubMed
    19. Maji A. Hazra A. Maiti D. Org. Lett. 2014;16:4524–4527. doi: 10.1021/ol502071g. - DOI - PubMed
    1. Guillemard L. Kaplaneris N. Ackermann L. Johansson M. J. Nat. Rev. Chem. 2021;5:522–545. doi: 10.1038/s41570-021-00300-6. - DOI - PubMed
    2. de Carvalho R. L. de Miranda A. S. Nunes M. P. Gomes R. S. Jardim G. A. M. da Silva Júnior E. N. Beilstein J. Org. Chem. 2021;17:1849–1938. doi: 10.3762/bjoc.17.126. - DOI - PMC - PubMed
    3. Dey A. Maity S. Maiti S. Chem. Commun. 2016;52:12398–12414. doi: 10.1039/C6CC05235E. - DOI - PubMed
    4. Song G. Wang F. Li X. Chem. Soc. Rev. 2012;41:3651–3678. doi: 10.1039/C2CS15281A. - DOI - PubMed
    1. Murali K. Machado L. A. de Carvalho R. L. Pedrosa L. F. Mukherjee R. da Silva Júnior E. N. Maiti D. Chem. – Eur. J. 2021;27:12453–12508. doi: 10.1002/chem.202101004. - DOI - PubMed
    2. de Carvalho R. L. Almeida R. G. Murali K. Machado L. A. Pedrosa L. F. Dolui P. Maiti D. da Silva Júnior E. N. Org. Biomol. Chem. 2021;19:525–547. doi: 10.1039/D0OB02232B. - DOI - PubMed
    1. Xue X.-S. Ji P. Zhou B. Cheng J.-P. Chem. Rev. 2017;117:8622–8648. doi: 10.1021/acs.chemrev.6b00664. - DOI - PubMed
    2. Hummel J. R. Boerth J. A. Ellman J. A. Chem. Rev. 2017;117:9163–9227. doi: 10.1021/acs.chemrev.6b00661. - DOI - PMC - PubMed
    3. He J. Wasa M. Chan K. S. L. Shao Q. Yu J.-Q. Chem. Rev. 2017;117:8754–8786. doi: 10.1021/acs.chemrev.6b00622. - DOI - PMC - PubMed
    4. Piou T. Rovis T. Acc. Chem. Res. 2018;51:170–180. doi: 10.1021/acs.accounts.7b00444. - DOI - PMC - PubMed
    5. Vásquez-Céspedes S. Wang X. Glorius F. ACS Catal. 2018;8:242–257. doi: 10.1021/acscatal.7b03048. - DOI
    6. Lu M.-Z. Goh J. Maraswami M. Jia Z. Tian J.-S. Loh T.-P. Chem. Rev. 2022;122:17479–17646. doi: 10.1021/acs.chemrev.2c00032. - DOI - PubMed
    7. Rej S. Ano Y. Chatani N. Chem. Rev. 2020;120:1788–1887. doi: 10.1021/acs.chemrev.9b00495. - DOI - PubMed
    8. Dey A. Sinha S. K. Achar T. K. Maiti D. Angew. Chem., Int. Ed. 2018;58:10820–10843. doi: 10.1002/anie.201812116. - DOI - PubMed
    9. Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015;2:1107–1295. doi: 10.1039/C5QO00004A. - DOI
    10. Zhu R.-Y. Farmer M. E. Chen Y.-Q. Yu J.-Q. Angew. Chem., Int. Ed. 2016;55:10578–10599. doi: 10.1002/anie.201600791. - DOI - PMC - PubMed
    11. Zakis J. M. Smejkal T. Wencel-Delord J. Chem. Commun. 2022;58:483–490. doi: 10.1039/D1CC05195D. - DOI - PubMed
    12. Haldar C. Hoque M. E. Bisht R. Chattopadhyay B. Tetrahedron Lett. 2018;59:1269–1277. doi: 10.1016/j.tetlet.2018.01.098. - DOI
    13. Baudoin O. Acc. Chem. Res. 2017;50:1114–1123. doi: 10.1021/acs.accounts.7b00099. - DOI - PubMed
    14. Minami Y. Hiyama T. Acc. Chem. Res. 2016;49:67–77. doi: 10.1021/acs.accounts.5b00414. - DOI - PubMed
    15. Woźniak Ł. Cramer N. Trends. Chem. 2019;1:471–484. doi: 10.1016/j.trechm.2019.03.013. - DOI
    16. Ackermann L. Acc. Chem. Res. 2020;53:84–104. doi: 10.1021/acs.accounts.9b00510. - DOI - PubMed
    17. Loup J. Dhawa U. Pesciaioli F. Wencel-Delord J. Ackermann L. Angew. Chem., Int. Ed. 2019;58:12803–12818. doi: 10.1002/anie.201904214. - DOI - PubMed
    1. Ghosh S. Shilpa S. Athira C. Sunoj R. B. Topics in Catal. 2022;65:141–164. doi: 10.1007/s11244-021-01527-9. - DOI
    2. Bhattacharya T. Dutta S. Maiti D. ACS Catal. 2021;11:9702–9714. doi: 10.1021/acscatal.1c02552. - DOI
    3. Mudarra Á. L. Martínez De Salinas S. Pérez-Temprano M. H. Org. Biomol. Chem. 2019;17:1655–1667. doi: 10.1039/C8OB02611D. - DOI - PubMed
    4. Bay K. L. Yang Y.-F. Houk K. N. J. Organomet. Catal. 2018;864:19–25. doi: 10.1016/j.jorganchem.2017.12.026. - DOI