Strain-Driven Formal [1,3]-Aryl Shift within Molecular Bows
- PMID: 37656430
- DOI: 10.1002/anie.202312238
Strain-Driven Formal [1,3]-Aryl Shift within Molecular Bows
Abstract
Delving into the influence of strain on organic reactions in small molecules at the molecular level can unveil valuable insight into developing innovative synthetic strategies and structuring molecules with superior properties. Herein, we present a molecular-strain engineering approach to facilitate the consecutive [1,2]-aryl shift (formal [1,3]-aryl shift) in molecular bows (MBs) that integrate 1,4-dimethoxy-2,5-cyclohexadiene moieties. By introducing ring strain into MBs through tethering the bow limb, we can harness the intrinsic mechanical forces to drive multistep aryl shifts from the para- to the meta- to the ortho-position. Through the use of precise intramolecular strain, the seemingly impractical [1,3]-aryl shift was realized, resulting in the formation of ortho-disubstituted products. The solvent and temperature play a crucial role in the occurrence of the [1,3]-aryl shift. The free energy calculations with inclusion of solvation support a feasible mechanism, which entails multistep carbocation rearrangements, for the formal [1,3]-aryl shift. By exploring the application of molecular strain in synthetic chemistry, this research offers a promising direction for developing new tools and strategies towards precision organic synthesis.
Keywords: Aryl Shift; Carbocation Rearrangement; Mechanochemistry; Molecular-Strain Engineering; Strained Structure.
© 2023 Wiley-VCH GmbH.
Similar articles
-
Asymmetric Catalytic Rearrangements with α-Diazocarbonyl Compounds.Acc Chem Res. 2022 Feb 1;55(3):415-428. doi: 10.1021/acs.accounts.1c00664. Epub 2022 Jan 14. Acc Chem Res. 2022. PMID: 35029358
-
Strain-Release-Driven Electrochemical Skeletal Rearrangement of Non-Biased Alkyl Cyclopropanes/Butanes.Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413723. doi: 10.1002/anie.202413723. Epub 2024 Oct 30. Angew Chem Int Ed Engl. 2025. PMID: 39264356 Free PMC article.
-
1,5-Allyl Shift by a Sequential Achmatowicz/Oxonia-Cope/Retro-Achmatowicz Rearrangement.Angew Chem Int Ed Engl. 2022 Aug 8;61(32):e202205919. doi: 10.1002/anie.202205919. Epub 2022 Jun 24. Angew Chem Int Ed Engl. 2022. PMID: 35670657
-
The Scholl Reaction as a Powerful Tool for Synthesis of Curved Polycyclic Aromatics.Chem Rev. 2022 Sep 28;122(18):14554-14593. doi: 10.1021/acs.chemrev.2c00186. Epub 2022 Aug 12. Chem Rev. 2022. PMID: 35960873 Review.
-
Cephalostatin analogues--synthesis and biological activity.Fortschr Chem Org Naturst. 2004;87:1-80. doi: 10.1007/978-3-7091-0581-8_1. Fortschr Chem Org Naturst. 2004. PMID: 15079895 Review.
Cited by
-
Reversible strain-promoted DNA polymerization.Sci Adv. 2024 Apr 26;10(17):eado8020. doi: 10.1126/sciadv.ado8020. Epub 2024 Apr 24. Sci Adv. 2024. PMID: 38657068 Free PMC article.
-
Tether-entangled conjugated helices.Chem Sci. 2024 Sep 24;15(41):17128-49. doi: 10.1039/d4sc04796f. Online ahead of print. Chem Sci. 2024. PMID: 39355229 Free PMC article.
References
-
- H. Huang, R. D. Kamm, R. T. Lee, Am. J. Physiol. Cell Physiol. 2004, 287, C1-C11.
-
- None
-
- R. A. Cross, Biopolymers 2016, 105, 476-482;
-
- R. A. Cross, A. McAinsh, Nat. Rev. Mol. Cell Biol. 2014, 15, 257-271.
-
- P. J. Butler, K. K. Dey, A. Sen, Cell. Mol. Bioeng. 2015, 8, 106-118.
Grants and funding
LinkOut - more resources
Full Text Sources