Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep;9(35):eadg9204.
doi: 10.1126/sciadv.adg9204. Epub 2023 Sep 1.

Genomic epidemiology unveils the dynamics and spatial corridor behind the Yellow Fever virus outbreak in Southern Brazil

Marta Giovanetti  1   2   3 Francesco Pinotti  4 Camila Zanluca  5 Vagner Fonseca  6 Taishi Nakase  7 Andrea C Koishi  5 Marcel Tscha  5 Guilherme Soares  5 Gisiane Gruber Dorl  5 Antônio Ernesto M L Marques  5 Renato Sousa  8 Talita Emile Ribeiro Adelino  9 Joilson Xavier  2   10 Carla de Oliveira  1   2 Sandro Patroca  11 Natalia Rocha Guimaraes  9 Hegger Fritsch  2   10 Maria Angélica Mares-Guia  1 Flavia Levy  1 Pedro Henrique Passos  12 Vinicius Leme da Silva  13 Luiz Augusto Pereira  13 Ana Flávia Mendonça  13 Isabel Luana de Macêdo  14 Davi Emanuel Ribeiro de Sousa  14 Gabriela Rodrigues de Toledo Costa  15 Marcio Botelho de Castro  14   16 Miguel de Souza Andrade  17 Filipe Vieira Santos de Abreu  18 Fabrício Souza Campos  19 Felipe Campos de Melo Iani  9 Maira Alves Pereira  9 Karina Ribeiro Leite Jardim Cavalcante  12 Andre Ricardo Ribas de Freitas  20 Carlos Frederico Campelo de Albuquerque  6 Eduardo Marques Macário  21 Marlei Pickler Debiasi Dos Anjos  22 Rosane Campanher Ramos  23 Aline Alves Scarpellini Campos  24 Adriano Pinter  25 Marcia Chame  26 Livia Abdalla  26 Irina Nastassja Riediger  27 Sérvio Pontes Ribeiro  28 Ana I Bento  29 Tulio de Oliveira  30 Carla Freitas  31 Noely Fabiana Oliveira de Moura  32 Allison Fabri  1 Cintia Damasceno Dos Santos Rodrigues  1 Carolina Cardoso Dos Santos  1 Marco Antonio Barreto de Almeida  24 Edmilson Dos Santos  24 Jader Cardoso  24 Douglas Adriano Augusto  33 Eduardo Krempser  33 Luís Filipe Mucci  34   35   36 Renata Rispoli Gatti  37 Sabrina Fernandes Cardoso  37   38 João Augusto Brancher Fuck  39 Maria Goretti David Lopes  40 Ivana Lucia Belmonte  40 Gabriela Mayoral Pedroso da Silva  40 Maiane Regina Ferreira Soares  40 Marilia de Melo Santos de Castilhos  40 Joseana Cardoso de Souza E Silva  40 Alceu Bisetto Junior  40 Emanuelle Gemin Pouzato  40 Laurina Setsuko Tanabe  40 Daniele Akemi Arita  40 Ricardo Matsuo  40 Josiane Dos Santos Raymundo  40 Paula Cristina Linder Silva  40 Ana Santana Araújo Ferreira Silva  40 Sandra Samila  40 Glauco Carvalho  9 Rodrigo Stabeli  6 Wildo Navegantes  6 Luciano Andrade Moreira  41 Alvaro Gil A Ferreira  41 Guilherme Garcia Pinheiro  2 Bruno Tardelli Diniz Nunes  11 Daniele Barbosa de Almeida Medeiros  11 Ana Cecília Ribeiro Cruz  11 Rivaldo Venâncio da Cunha  42 Wes Van Voorhis  43 Ana Maria Bispo de Filippis  1 Maria Almiron  44 Edward C Holmes  45 Daniel Garkauskas Ramos  12 Alessandro Romano  12 José Lourenço  46 Luiz Carlos Junior Alcantara  1   2 Claudia Nunes Duarte Dos Santos  5
Affiliations

Genomic epidemiology unveils the dynamics and spatial corridor behind the Yellow Fever virus outbreak in Southern Brazil

Marta Giovanetti et al. Sci Adv. 2023 Sep.

Abstract

Despite the considerable morbidity and mortality of yellow fever virus (YFV) infections in Brazil, our understanding of disease outbreaks is hampered by limited viral genomic data. Here, through a combination of phylogenetic and epidemiological models, we reconstructed the recent transmission history of YFV within different epidemic seasons in Brazil. A suitability index based on the highly domesticated Aedes aegypti was able to capture the seasonality of reported human infections. Spatial modeling revealed spatial hotspots with both past reporting and low vaccination coverage, which coincided with many of the largest urban centers in the Southeast. Phylodynamic analysis unraveled the circulation of three distinct lineages and provided proof of the directionality of a known spatial corridor that connects the endemic North with the extra-Amazonian basin. This study illustrates that genomics linked with eco-epidemiology can provide new insights into the landscape of YFV transmission, augmenting traditional approaches to infectious disease surveillance and control.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.. Human incidence of YFV in Brazilian macroregions, 2015–2022.
(A) Time series of monthly reported human cases in four Brazilian macroregions (those reporting the majority of cases) and monthly mosquito-viral suitability measure (index P) aggregated (mean) across the macroregions. Index P is calibrated to YFV and Aedes aegypti, interpreted as spillover risk, and presented here index P is presented by the lines as baseline (black) and shifted by +1 month (blue). The inset plot shows the distribution (y axis) of human cases according to the value of index P (x axis) extracted at each time point of reported human YFV cases (shifted +1 month, standardized by yearly maximum). (B) Age distribution of human cases across the years (light blue) versus Census 2010 data (black), both aggregated across the Southeast and South macroregions. (C) Spatial distribution of human cases (red filled points) and one example of a spatial covariate (forest cover) used for modeling the Southeast macroregion. For all covariates, see fig. S1. Covariates were normalized by their maximum for visualization, with covariates population density, Atlantic and NHP cases first transformed with log10 (color scale in the bottom right). Spatial boundaries (black) are states: São Paulo (SP), Espírito Santo (ES), Minas Gerais (MG), Rio de Janeiro (RJ). (D) Marginal posterior distributions (standardized to appear on the same scale) for individual regression weights for the 10 covariates explored.
Fig. 2.
Fig. 2.. Spatial hotspots as a mixture of past reporting and proportion unvaccinated.
(A) Probability of reporting of human YFV cases per municipality as predicted by the spatial regression model. (B) Proportion unvaccinated (1, vaccination coverage) per municipality. (A and B) Variables are discretized into three categories to provide a bivariate color scale in (C) with a maximum of nine colors for best interpretability. (C) Spatial distribution of both probability of occurrence and proportion unvaccinated presented in bivariate color scale. Spatial distribution of both probability of occurrence and proportion unvaccinated presented in bivariate color scale [i.e., (A) and (B) superimposed into a bivariate color scale]. The three largest cities in each state are highlighted (São Paulo: São Paulo, Guarulhos, Campinas; Minas Gerais: Belo Horizonte, Uberlândia, Contagem; Rio de Janeiro: Duque de Caxias, Rio de Janeiro, São Gonçalo; Espírito Santo: Serra, Vila Velha, Cariacica).
Fig. 3.
Fig. 3.. YFV South America I genotype in Brazil.
(A) MCC phylogeny inferred using the 147 novel sequences obtained in this study plus 296 publicly available sequences from GenBank. Colors represent different sampling locations (Brazilian states). Colored bars below the tree represent the (top) clade (middle) host and Brazilian macroregion of sampling. Clade-defining mutations have been highlighted on each branch. (B) Map of Brazil presenting the states under investigation highlighted within macroregions: RR, Roraima; PA, Pará; DF, Distrito Federal; GO, Goiás; BA, Bahia; MG, Minas Gerais; ES, Espírito Santo; RJ, Rio de Janeiro; SP, São Paulo state; PR, Paraná; SC, Santa Catarina; RS, Rio Grande do Sul. (C) Root-to-tip regression of sequence sampling date against genetic divergence from the root of the outbreak clade. Sequences from the endemic Amazon basin (states of Roraima, Pará, and Tocantins) are highlighted.
Fig. 4.
Fig. 4.. Spatiotemporal spread of South America I genotype Clade Ia in Brazil.
(A) Root-to-tip regression of sequence sampling date against genetic divergence from the root of the outbreak clade. (B) Phylogeographic reconstruction of the spread of the South America I genotype clade Ia in Brazil (n = 163). Circles represent nodes of the MCC phylogeny and are colored according to their inferred time of occurrence. Shaded areas represent the 80% highest posterior density interval and depict the uncertainty of the phylogeographic estimates for each node. Solid curved lines denote the links between nodes and the directionality of movement. Differences in forest coverage population density are shown on a green-white scale. (C) Map of Brazil highlighting the spatial area under investigation. MG, Minas Gerais state; ES, Espírito Santo state; RJ, Rio de Janeiro state; BA, Bahia state.
Fig. 5.
Fig. 5.. Spatiotemporal spread of South America I genotype Clade IIb in Brazil.
(A) Root-to-tip regression of sequence sampling date against genetic divergence from the root of the outbreak clade. (B) Phylogeographic reconstruction of the spread of South America I genotype clade IIb in Brazil (n = 270). Circles represent nodes of the MCC phylogeny and are colored according to their inferred time of occurrence. Shaded areas represent the 80% highest posterior density interval and depict the uncertainty of the phylogeographic estimates for each node. Solid curved lines denote the links between nodes and the directionality of movement. Differences in forest coverage population density are shown on a green-white scale. (C) Map of Brazil highlighting the spatial area under investigation. GO, Goiás state; MG, Minas Gerais state; ES, Espírito Santo state; RJ, Rio de Janeiro state; SP, São Paulo state; PR, Paraná state; SC, Santa Catarina state; RS, Rio Grande do Sul state.

References

    1. B. T. Lindenbach, C. L. Murray, H.-J. Thiel, C. Rice, Flaviviridae, in Fields Virology, D. M. Knipe, P. M. Howley, Eds. (Lippincott Williams & Wilkins, Philadelphia, 2013), pp. 712–746.
    1. Monath T. P., Vasconcelos P. F. C., Yellow fever. J. Clin. Virol. 64, 160–173 (2015). - PubMed
    1. Silva N. I. O., Sacchetto L., Rezende I. M., Trindade G. D. S., Labeaud A. D., Thoisy B., Drumond B. P., Recent sylvatic yellow fever virus transmission in Brazil: The news from an old disease. Virol. J. 17, 9 (2020). - PMC - PubMed
    1. Vasconcelos P. F. C., Bryant J. E., Travassos da Rosa A. P. A., Tesh R. B., Rodrigues S. G., Barrett A. D. T., Genetic divergence and dispersal of yellow fever virus, Brazil. Emerg. Infect. Dis. 10, 1578–1584 (2004). - PMC - PubMed
    1. Sacchetto L., Drumond B. P., Han B. A., Nogueira M. L., Vasilakis N., Re-emergence of yellow fever in the neotropics - quo vadis? Emerg. Top. Life Sci. 4, 399–410 (2020). - PMC - PubMed

Publication types