The Protective Effect of Virus Capsids on RNA and DNA Virus Genomes in Wastewater
- PMID: 37656816
- PMCID: PMC10516120
- DOI: 10.1021/acs.est.3c03814
The Protective Effect of Virus Capsids on RNA and DNA Virus Genomes in Wastewater
Abstract
Virus concentrations measured in municipal wastewater help inform both the water treatment necessary to protect human health and wastewater-based epidemiology. Wastewater measurements are typically PCR-based, and interpreting gene copy concentrations requires an understanding of the form and stability of the nucleic acids. Here, we study the persistence of model virus genomes in wastewater, the protective effects provided by the virus capsids, and the relative decay rates of the genome and infectious viruses. In benchtop batch experiments in wastewater influent at 25 °C, extraviral (+)ssRNA and dsDNA amplicons degraded by 90% within 15-19 min and 1.6-1.9 h, respectively. When encapsidated, the T90 for MS2 (+)ssRNA increased by 424× and the T90 for T4 dsDNA increased by 52×. The (+)ssRNA decay rates were similar for a range of amplicon sizes. For our model phages MS2 and T4, the nucleic acid signal in untreated wastewater disappeared shortly after the viruses lost infectivity. Combined, these results suggest that most viral genome copies measured in wastewater are encapsidated, that measured concentrations are independent of assay amplicon sizes, and that the virus genome decay rates of nonenveloped (i.e., naked) viruses are similar to inactivation rates. These findings are valuable for the interpretation of wastewater virus measurements.
Keywords: BCoV; MS2; T3; T4; amplicon; bacteriophage; decay; infectivity.
Conflict of interest statement
The authors declare no competing financial interest.
Figures




Similar articles
-
SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges.Chem Eng J. 2021 Feb 1;405:126893. doi: 10.1016/j.cej.2020.126893. Epub 2020 Sep 4. Chem Eng J. 2021. PMID: 32901196 Free PMC article.
-
Reactivity of Viral Nucleic Acids with Chlorine and the Impact of Virus Encapsidation.Environ Sci Technol. 2022 Jan 4;56(1):218-227. doi: 10.1021/acs.est.1c04239. Epub 2021 Dec 14. Environ Sci Technol. 2022. PMID: 34905340
-
Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems.Water Res. 2024 Jan 1;248:120834. doi: 10.1016/j.watres.2023.120834. Epub 2023 Nov 4. Water Res. 2024. PMID: 37984037
-
Simple rules for efficient assembly predict the layout of a packaged viral RNA.J Mol Biol. 2011 May 6;408(3):399-407. doi: 10.1016/j.jmb.2011.02.039. Epub 2011 Feb 25. J Mol Biol. 2011. PMID: 21354423 Review.
-
Mechanisms of genome propagation and helper exploitation by satellite phage P4.Microbiol Rev. 1993 Sep;57(3):683-702. doi: 10.1128/mr.57.3.683-702.1993. Microbiol Rev. 1993. PMID: 8246844 Free PMC article. Review.
Cited by
-
Wastewater surveillance for viral pathogens: A tool for public health.Heliyon. 2024 Jun 29;10(13):e33873. doi: 10.1016/j.heliyon.2024.e33873. eCollection 2024 Jul 15. Heliyon. 2024. PMID: 39071684 Free PMC article. Review.
-
Persistence of human respiratory viral RNA in wastewater-settled solids.Appl Environ Microbiol. 2024 Apr 17;90(4):e0227223. doi: 10.1128/aem.02272-23. Epub 2024 Mar 19. Appl Environ Microbiol. 2024. PMID: 38501669 Free PMC article.
-
Detection and quantification of human immunodeficiency virus-1 (HIV-1) total nucleic acids in wastewater settled solids from two California communities.Appl Environ Microbiol. 2024 Dec 18;90(12):e0147724. doi: 10.1128/aem.01477-24. Epub 2024 Nov 11. Appl Environ Microbiol. 2024. PMID: 39526804 Free PMC article.
-
Influence of Amino Acid Substitutions in Capsid Proteins of Coxsackievirus B5 on Free Chlorine and Thermal Inactivation.Environ Sci Technol. 2024 Mar 26;58(12):5279-5289. doi: 10.1021/acs.est.3c10409. Epub 2024 Mar 15. Environ Sci Technol. 2024. PMID: 38488515 Free PMC article.
References
-
- Graham K. E.; Loeb S. K.; Wolfe M. K.; Catoe D.; Sinnott-Armstrong N.; Kim S.; Yamahara K. M.; Sassoubre L. M.; Mendoza Grijalva L. M.; Roldan-Hernandez L.; Langenfeld K.; Wigginton K. R.; Boehm A. B. SARS-CoV-2 RNA in Wastewater Settled Solids Is Associated with COVID-19 Cases in a Large Urban Sewershed. Environ. Sci. Technol. 2021, 55 (1), 488–498. 10.1021/acs.est.0c06191. - DOI - PubMed
-
- Ahmed W.; Angel N.; Edson J.; Bibby K.; Bivins A.; O’Brien J. W.; Choi P. M.; Kitajima M.; Simpson S. L.; Li J.; Tscharke B.; Verhagen R.; Smith W. J. M.; Zaugg J.; Dierens L.; Hugenholtz P.; Thomas K. V.; Mueller J. F. First Confirmed Detection of SARS-CoV-2 in Untreated Wastewater in Australia: A Proof of Concept for the Wastewater Surveillance of COVID-19 in the Community. Sci. Total Environ. 2020, 728, 13876410.1016/j.scitotenv.2020.138764. - DOI - PMC - PubMed
-
- Soller J.; Jennings W.; Schoen M.; Boehm A.; Wigginton K.; Gonzalez R.; Graham K. E.; McBride G.; Kirby A.; Mattioli M. Modeling Infection from SARS-CoV-2 Wastewater Concentrations: Promise, Limitations, and Future Directions. J. Water Health 2022, 20 (8), 1197–1211. 10.2166/wh.2022.094. - DOI - PMC - PubMed
-
- Aziz M. A.; Norman S.; Mohamed Zaid S.; Simarani K.; Sulaiman R.; Mohd Aris A.; Chin K. B.; Mohd Zain R. Environmental Surveillance of SARS-CoV-2 in Municipal Wastewater to Monitor COVID-19 Status in Urban Clusters in Malaysia. Arch. Microbiol. 2023, 205 (2), 76.10.1007/s00203-023-03417-y. - DOI - PMC - PubMed
-
- Medema G.; Heijnen L.; Elsinga G.; Italiaander R.; Brouwer A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7 (7), 511–516. 10.1021/acs.estlett.0c00357. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources