Enabling cuboid-based fisher ratio analysis using total-transfer comprehensive three-dimensional gas chromatography with time-of-flight mass spectrometry
- PMID: 37660566
- DOI: 10.1016/j.chroma.2023.464341
Enabling cuboid-based fisher ratio analysis using total-transfer comprehensive three-dimensional gas chromatography with time-of-flight mass spectrometry
Abstract
Comprehensive three-dimensional (3D) gas chromatography with time-of-flight mass spectrometry (GC3-TOFMS) is a promising instrumental platform for the separation of volatiles and semi-volatiles due to its increased peak capacity and selectivity relative to comprehensive two-dimensional gas chromatography with TOFMS (GC×GC-TOFMS). Given the recent advances in GC3-TOFMS instrumentation, new data analysis methods are now required to analyze its complex data structure efficiently and effectively. This report highlights the development of a cuboid-based Fisher ratio (F-ratio) analysis for supervised, non-targeted studies. This approach builds upon the previously reported tile-based F-ratio software for GC×GC-TOFMS data. Cuboid-based F-ratio analysis is enabled by constructing 3D cuboids within the GC3-TOFMS chromatogram and calculating F-ratios for every cuboid on a per-mass channel basis. This methodology is evaluated using a GC3-TOFMS data set of jet fuel spiked with both non-native and native components. The neat and spiked jet fuels were collected on a total-transfer (100 % duty cycle) GC3-TOFMS instrument, employing thermal modulation between the first (1D) and second dimension (2D) columns and dynamic pressure gradient modulation between the 2D and third dimension (3D) columns. In total, cuboid-based F-ratio analysis discovered 32 spiked analytes in the top 50 hits at concentration ratios as low as 1.1. In contrast, tile-based F-ratio analysis of the corresponding GC×GC-TOFMS data only discovered 28 of the spiked analytes total, with only 25 of them in the top 50 hits. Along with discovering more analytes, cuboid-based F-ratio analysis of GC3-TOFMS data resulted in fewer false positives. The increased discoverability is due to the added peak capacity and selectivity provided by the 3D column with GC3-TOFMS resulting in improved chromatographic resolution.
Keywords: Chemometrics; Comprehensive three-dimensional gas chromatography; Fisher ratio analysis; Non-targeted analysis; Time-of-flight mass spectrometry.
Copyright © 2023. Published by Elsevier B.V.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous