Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 29:16:2627-2637.
doi: 10.2147/DMSO.S426102. eCollection 2023.

Liver Fibrosis Scores and Coronary Artery Disease: Novel Findings in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease

Affiliations

Liver Fibrosis Scores and Coronary Artery Disease: Novel Findings in Patients with Metabolic Dysfunction-Associated Fatty Liver Disease

Chuan Lu et al. Diabetes Metab Syndr Obes. .

Abstract

Background: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a recently proposed term as a more appropriate definition for nonalcoholic fatty liver disease (NAFLD). Previous studies have shown an association between liver fibrosis scores and cardiovascular disease (CVD) in patients with NAFLD. In this study, we aimed to investigate the relationship between liver fibrosis scores and coronary artery disease (CAD) severity in patients with MAFLD.

Methods: This study was conducted on 1346 patients with MAFLD at the Second Hospital of Dalian Medical University between January 2018 and December 2021. We calculated the liver fibrosis scores, including the fibrosis 4 (FIB-4) score, nonalcoholic fatty liver disease fibrosis score (NFS), and aspartate aminotransferase-to-platelet ratio index (APRI). We divided the participants into three groups based on the degree of coronary artery stenosis assessed using coronary computed tomography angiography (CCTA): CAD (≥50%), non-obstructive (1-49%), and normal (no stenosis).

Results: An increased FIB-4 score and NFS were significantly associated with CAD severity in patients with MAFLD. The percentage of patients with a high FIB-4 score was higher in the CAD group than in the other two groups (5.80%, 4.31%, and 2.24%, respectively; p<0.001), as was the percentage of patients with NFS (11.12%, 5.19%, and 0.93%, respectively; p<0.001). Carotid atherosclerosis, creatinine levels, and CAC scores were significant predictors of CAD. The FIB-4 score and NFS were independently associated with CAD even after adjusting for sex and well-known cardiovascular risk factors. The APRI was not a significant factor for CAD in any model. In the bivariate correlation analysis, the FIB-4 score and NFS were directly correlated with CAC scores.

Conclusion: Non-invasive liver fibrosis scores (FIB-4 and NFS) were significantly associated with the CAD severity and CAC scores in patients with MAFLD. Screening for CAD may be beneficial for subjects with high liver fibrosis risk MAFLD.

Keywords: coronary artery calcium scores; coronary artery disease; liver fibrosis scores; metabolic dysfunction-associated fatty liver disease; nonalcoholic fatty liver disease.

PubMed Disclaimer

Conflict of interest statement

Chuan Lu and Yan Chen are co-first authors for this study. The authors declare that there are no conflicts of interest in this work.

Figures

Figure 1
Figure 1
The percentage of liver fibrosis risk divided by the FIB-4 score in the normal, non-obstructive, and CAD groups. The percentage of high FIB-4 score were significantly higher in the CAD group than in the other two groups (p<0.01).
Figure 2
Figure 2
The percentage of liver fibrosis risk divided by the NFS in the normal, non-obstructive, and CAD groups. The percentage of high NFS were significantly higher in the CAD group than in the other two groups (p<0.01).

Similar articles

Cited by

References

    1. Sung KC, Yoo TK, Lee MY, Byrne CD, Zheng MH, Targher G. Comparative associations of nonalcoholic fatty liver disease and metabolic dysfunction-associated fatty liver disease with coronary artery calcification: a cross-sectional and longitudinal cohort study. Arterioscler Thromb Vasc Biol. 2023;43(3):482–491. doi:10.1161/ATVBAHA.122.318661 - DOI - PubMed
    1. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20. doi:10.1038/nrgastro.2017.109 - DOI - PubMed
    1. Chan KE, Koh T, Tang A, et al. Global prevalence and clinical characteristics of metabolic-associated fatty liver disease: a meta-analysis and systematic review of 10 739 607 individuals. J Clin Endocrinol Metab. 2022;107(9):2691–2700. doi:10.1210/clinem/dgac321 - DOI - PubMed
    1. Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73(1):202–209. doi:10.1016/j.jhep.2020.03.039 - DOI - PubMed
    1. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–357. doi:10.1002/hep.29367 - DOI - PubMed