Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 5;148(20):5041-5049.
doi: 10.1039/d3an01018j.

Characterization of site-specific N-glycosylation signatures of isolated uromodulin from human urine

Affiliations

Characterization of site-specific N-glycosylation signatures of isolated uromodulin from human urine

Tianhai Lin et al. Analyst. .

Abstract

Uromodulin (Umod, Tamm-Horsfall protein) is the most abundant urinary N-glycoprotein produced exclusively by the kidney. It can form filaments to antagonize the adhesion of uropathogens. However, the site-specific N-glycosylation signatures of Umod in healthy individuals and patients with IgA nephropathy (IgAN) remain poorly understood due to the lack of suitable isolation and analytical methods. In this study, we first presented a simple and fast method based on diatomaceous earth adsorption to isolate Umod. These isolated glycoproteins were digested by trypsin and/or Glu-C. Intact N-glycopeptides with or without HILIC enrichment were analyzed using our developed EThcD-sceHCD-MS/MS. Based on the optimized workflow, we identified a total of 780 unique intact N-glycopeptides (7 N-glycosites and 152 N-glycan compositions) from healthy individuals. As anticipated, these glycosites exhibited glycoform heterogeneity. Almost all N-glycosites were modified completely by the complex type, except for one N-glycosite (N275), which was nearly entirely occupied by the high-mannose type for mediating Umod's antiadhesive activity. Then, we compared the N-glycosylation of Umod between healthy controls (n = 9) and IgAN patients (n = 9). The N-glycosylation of Umod in IgAN patients will drastically decrease and be lost. Finally, we profiled the most comprehensive site-specific N-glycosylation map of Umod and revealed its alterations in IgAN patients. Our method provides a high-throughput workflow for characterizing the N-glycosylation of Umod, which can aid in understanding its roles in physiology and pathology, as well as serving as a potential diagnostic tool for evolution of renal tubular function.

PubMed Disclaimer

LinkOut - more resources