Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct;70(10):1213-1228.
doi: 10.1109/TUFFC.2023.3312159. Epub 2023 Oct 17.

Five Low-Noise Stable Oscillators Referenced to the Same Multimode AlN/Si MEMS Resonator

Five Low-Noise Stable Oscillators Referenced to the Same Multimode AlN/Si MEMS Resonator

Tahmid Kaisar et al. IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Oct.

Abstract

We report on the first experimental demonstration of five self-sustaining feedback oscillators referenced to a single multimode resonator, using piezoelectric aluminum nitride on silicon (AlN/Si) microelectromechanical systems (MEMS) technology. Integrated piezoelectric transduction enables efficient readout of five resonance modes of the same AlN/Si MEMS resonator, at 10, 30, 65, 95, and 233 MHz with quality ( Q ) factors of 18 600, 4350, 4230, 2630, and 2138, respectively, at room temperature. Five stable self-sustaining oscillators are built, each referenced to one of these high- Q modes, and their mode-dependent phase noise and frequency stability (Allan deviation) are measured and analyzed. The 10, 30, 65, 95, and 233 MHz oscillators exhibit low phase noise of -116, -100, -105, -106, and -92 dBc/Hz at 1 kHz offset frequency, respectively. The 65 MHz oscillator yields the Allan deviation of 4×10-9 and 2×10-7 at 1 and 1000 s averaging time, respectively. The 10 MHz oscillator's low phase noise holds strong promise for clock and timing applications. The five oscillators' overall promising performance suggests suitability for multimode resonant sensing and real-time frequency tracking. This work also elucidates mode dependency in oscillator noise and stability, one of the key attributes of mode-engineerable resonators.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources