Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 29;25(38):6969-6974.
doi: 10.1021/acs.orglett.3c02394. Epub 2023 Sep 5.

Nickel Catalyzed Carbonylation/Carboxylation Sequence via Double CO2 Incorporation

Affiliations

Nickel Catalyzed Carbonylation/Carboxylation Sequence via Double CO2 Incorporation

Riccardo Giovanelli et al. Org Lett. .

Abstract

A carbonylation-carboxylation synthetic sequence, via double CO2 fixation, is described. The productive merger of a Ni-catalyzed cross-electrophile coupling manifold, with the use of AlCl3, triggered a cascade reaction with the formation of three consecutive C-C bonds in a single operation. This strategy traces an unprecedented synthetic route to ketones under Lewis acid assisted carbon dioxide valorization. Computational insights revealed a unique double function of AlCl3, and labeling (13CO2) experiments validate the genuine incorporation of CO2 in both functional groups.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(a) State of the art on the use of “CO2≡CO” as C1 synthon in organic synthesis. (b) “Vacancy” on the direct use of CO2 for the catalytic synthesis of ketones. (c) The present working idea ([Mred] and [Mox] indicate different oxidation states of the metal catalyst, [H]: reductant).
Scheme 1
Scheme 1. Scope of the Carbonylation/Carboxylation Reaction
mmol scale reaction.
Scheme 2
Scheme 2. Proving the Synthetic Versatility of Tetralone 2a
Scheme 3
Scheme 3. Top: Proposed Mechanism for the Formation of 2a; Bottom: Proving the Double CO2 Incorporation via Labelling Experiments
Relative Gibbs free energies are expressed in kcal/mol. Oxygen atoms coordinated to AlCl3 are depicted in red.

References

    1. Liu Q.; Wu L.; Jackstell R.; Beller M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2015, 6, 5933.10.1038/ncomms6933. - DOI - PubMed
    2. Song Q.-W.; Zhou Z.-H.; He L.-N. Efficient, selective and sustainable catalysis of carbon dioxide. Green. Chem. 2017, 19, 3707.10.1039/C7GC00199A. - DOI
    3. Robert M. Running the clock: CO2 catalysis in the age of anthropocene. ACS Energy Lett. 2016, 1, 281.10.1021/acsenergylett.6b00159. - DOI
    4. Modak A.; Bhanja P.; Dutta S.; Chowdhury B.; Bhaumik A. Catalytic reduction of CO2 into fuels and fine chemicals. Green Chem. 2020, 22, 4002.10.1039/D0GC01092H. - DOI
    5. Fujihara T.Carboxylation with CO2. In Chemical Valorization of Carbon Dioxide; Stefanidis G., Stankiewicz A., Eds.; RCS-publisher. ISBN: 978-1-83916-407-1 (2023).
    1. Ackermann L. Transition-metal-catalyzed carboxylation of C-H bonds. Angew. Chem., Int. Ed. 2011, 50, 3842.10.1002/anie.201007883. - DOI - PubMed
    2. Tortajada A.; Julia-Hernandez F.; Borjesson M.; Moragas T.; Martin R. Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem., Int. Ed. 2018, 57, 15948.10.1002/anie.201803186. - DOI - PubMed
    1. Yan S.-S.; Fu Q.; Liao L.-L.; Sun G.-Q.; Ye J.-H.; Gong L.; Bo-Xue Y.-Z.; Yu D.-G. Transition metal-catalyzed carboxylation of unsaturated substrates with CO2. Coord. Chem. Rev. 2018, 374, 439.10.1016/j.ccr.2018.07.011. - DOI
    2. Fujihara T.; Tsuji Y. Carboxylation reactions using carbon dioxide as the C1 source via catalytically generated allyl metal intermediates. Front. Chem. 2019, 7, 430.10.3389/fchem.2019.00430. - DOI - PMC - PubMed
    3. Ran C.-K.; Liao L.-L.; Gao T.-Y.; Gui Y.-Y.; Yu D.-G. Recent progress and challenges in carboxylation with CO2. Curr. Opin. Green Sus. Chem. 2021, 32, 100525.10.1016/j.cogsc.2021.100525. - DOI
    1. Wang L.; Sun W.; Liu C. Recent Advances in Homogeneous Carbonylation Using CO2 as CO Surrogate. Chin. J. Chem. 2018, 36, 353.10.1002/cjoc.201700746. - DOI
    2. Song L.; Jiang Y.-X.; Zhang Z.; Gui Y.-Y.; Zhou X.-Y.; Yu D.-G. CO2 = CO + [O]: recent advances in carbonylation of C–H bonds with CO2. Chem. Commun. 2020, 56, 8355.10.1039/D0CC00547A. - DOI - PubMed
    3. Zhang Y.; Zhang T.; Das S. Catalytic transformation of CO2 into C1 chemicals using hydrosilanes as a reducing agent. Green Chem. 2020, 22, 1800.10.1039/C9GC04342J. - DOI
    4. Giovanelli R.; Bertuzzi G.; Bandini M.. Metal-catalyzed carbonylation reaction with CO2: an update, ChemCatChem. 2023.10.1002/cctc.202300827 - DOI
    1. Zadel G.; Breitmaier E. A one-pot synthesis of ketones and aldehydes from carbon dioxide and organolithium compounds. Angew. Chem., Int. Ed. Engl. 1992, 31, 1035.10.1002/anie.199210351. - DOI
    2. Wu J.; Yang X.; He Z.; Mao X.; Hatton T. A.; Jamison T. F. Continuous flow synthesis of ketones from carbon dioxide and organolithium or Grignard reagents. Angew. Chem., Int. Ed. 2014, 53, 8416.10.1002/anie.201405014. - DOI - PubMed
    3. Pfennig V. S.; Villella R. C.; Nikodemus J.; Bolm C. Angew. Chem., Int. Ed. 2022, 61, e29211651410.1002/anie.202116514. - DOI - PMC - PubMed
    4. For a selected examples of carbonylation reaction via in situ generation of CO from CO2 see:

    5. Fu S.; Yao S.; Guo S.; Guo G.-C.; Yuan W.; Lu T.-B.; Zhang Z.-M. Feeding carbonylation with CO2 via the synergy of single-site/nanocluster catalysts in a photosensitizing MOF. J. Am. Chem. Soc. 2021, 143, 20792.10.1021/jacs.1c08908. - DOI - PubMed
    6. Sang R.; Hu Y.; Razzaq R.; Mollaert G.; Atia H.; Bentrup U.; Sharif M.; Neumann H.; Junge H.; Jackstell R.; Maes B. U. W.; Beller M. A practical concept for catalytic carbonylations using carbon dioxide. Nat. Commun. 2022, 13, 4432.10.1038/s41467-022-32030-8. - DOI - PMC - PubMed