Development of recycled and miniaturized electroanalytical sensor: Probing isoniazid determination in environmental water matrices
- PMID: 37669719
- DOI: 10.1016/j.chemosphere.2023.140030
Development of recycled and miniaturized electroanalytical sensor: Probing isoniazid determination in environmental water matrices
Abstract
Surface water pollution has become relevant because growing population and intense industrial activities. Thus, to protect the environment from contamination, recently the electroanalytical sensors that require small sample volume and easy preparation have shown a prominent performance for pharmaceuticals monitoring. For this purpose, a miniaturized electrochemical platform was developed based on recycling obsolete computer integrated circuits (microchips), fitting with the ideals of green chemistry and circular economy. The gold microelectrodes array (Au-μEA) was easily exposed by polishing the device surface and then characterized by optical microscopy, scanning electron microscopy and cyclic voltammetry. To enhance the analytical performance for isoniazid detection, the Au-μEA was modified with electrochemically reduced graphene oxide (ERGO). The developed sensor presented a linear range between 5 and 100 μmol L-1 and a limit of detection of 1.38 μmol L-1 demonstrating a reliable performance. Looking to its environmental application, the ERGO/Au-μEA sensor was used for isoniazid quantification in lagoon, river, tap water and synthetic effluent spiked samples with recovery values between 92.5 and 108.4%. Thus, this research field opens up new possibilities in global water-related issues contributing with innovative sustainable solutions.
Keywords: Au microelectrode array; Electrochemically reduced graphene oxide; Emerging pollutant determination; Modified electrode; Sensor.
Copyright © 2023 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
