circROBO1 promotes prostate cancer growth and enzalutamide resistance via accelerating glycolysis
- PMID: 37670963
- PMCID: PMC10475366
- DOI: 10.7150/jca.86940
circROBO1 promotes prostate cancer growth and enzalutamide resistance via accelerating glycolysis
Abstract
Background and aim: As non-coding RNAs, circular RNAs (circRNAs) contribute to the progression of malignancies by regulating various biological processes. In prostate cancer, however, there is still a lack of understanding regarding the potential molecular pathways and roles of circRNAs. Methods: Loss-off function experiments were performed to investigate the potential biological function of circRNA in the progression of prostate cancer. Western blot, qRT-PCR, and IHC assay were used to examine the expression level of different genes or circRNAs. Further molecular biology experiments were conducted to uncover the molecular mechanism underlying circRNA in prostate cancer using dual luciferase reporter and RNA immunoprecipitation (RIP) assays. Results: A novel circRNA (hsa_circ_0124696, named circROBO1) was identified as a significantly upregulated circRNA in both prostate cancer cells and tissues. Suppression of circROBO1 significantly attenuated the proliferation of prostate cancer cells. In addition, we found that the knockdown of circROBO1 remarkably increased the sensitivity of prostate cancer to enzalutamide treatment. A deceleration in glycolysis rate was observed after inhibition of circROBO1, which could suppress prostate cancer growth and overcome resistance to enzalutamide. Our results revealed that circROBO1 promotes prostate cancer growth and enzalutamide resistance via accelerating glycolysis. Conclusion: Our study identified the biological role of the circROBO1-miR-556-5p-PGK1 axis in the growth and enzalutamide resistance of prostate cancer, which is the potential therapeutic target of prostate cancer.
Keywords: PGK1; circROBO1; circular RNAs; enzalutamide resistance; prostate cancer.
© The author(s).
Conflict of interest statement
Competing Interests: The authors have declared that no competing interest exists.
Figures
References
-
- Sung H, Ferlay J, Siegel RL. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians. 2021;71(3):209–49. - PubMed
-
- Mottet N, Bellmunt J, Bolla M. et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. European urology. 2017;71(4):618–29. - PubMed
-
- Epstein JI, Amin MB, Reuter VE. et al. Contemporary Gleason Grading of Prostatic Carcinoma: An Update With Discussion on Practical Issues to Implement the 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. The American journal of surgical pathology. 2017;41(4):e1–e7. - PubMed
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
