Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models
- PMID: 37671024
- PMCID: PMC10475789
- DOI: 10.1016/j.crmeth.2023.100534
Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models
Abstract
In this work, we propose an approach to generate whole-slide image (WSI) tiles by using deep generative models infused with matched gene expression profiles. First, we train a variational autoencoder (VAE) that learns a latent, lower-dimensional representation of multi-tissue gene expression profiles. Then, we use this representation to infuse generative adversarial networks (GANs) that generate lung and brain cortex tissue tiles, resulting in a new model that we call RNA-GAN. Tiles generated by RNA-GAN were preferred by expert pathologists compared with tiles generated using traditional GANs, and in addition, RNA-GAN needs fewer training epochs to generate high-quality tiles. Finally, RNA-GAN was able to generalize to gene expression profiles outside of the training set, showing imputation capabilities. A web-based quiz is available for users to play a game distinguishing real and synthetic tiles: https://rna-gan.stanford.edu/, and the code for RNA-GAN is available here: https://github.com/gevaertlab/RNA-GAN.
Keywords: artificial intelligence; deep learning; generative adversarial network; generative model; synthetic biomedical data; variational autoencoder.
© 2023 The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN).Diagnostics (Basel). 2021 Nov 19;11(11):2147. doi: 10.3390/diagnostics11112147. Diagnostics (Basel). 2021. PMID: 34829494 Free PMC article.
-
Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation.Entropy (Basel). 2020 Sep 21;22(9):1055. doi: 10.3390/e22091055. Entropy (Basel). 2020. PMID: 33286824 Free PMC article.
-
scMultiGAN: cell-specific imputation for single-cell transcriptomes with multiple deep generative adversarial networks.Brief Bioinform. 2023 Sep 22;24(6):bbad384. doi: 10.1093/bib/bbad384. Brief Bioinform. 2023. PMID: 37903416 Free PMC article.
-
Generative Adversarial Networks: A Primer for Radiologists.Radiographics. 2021 May-Jun;41(3):840-857. doi: 10.1148/rg.2021200151. Epub 2021 Apr 23. Radiographics. 2021. PMID: 33891522 Review.
-
Generative Adversarial Network Technologies and Applications in Computer Vision.Comput Intell Neurosci. 2020 Aug 1;2020:1459107. doi: 10.1155/2020/1459107. eCollection 2020. Comput Intell Neurosci. 2020. PMID: 32802024 Free PMC article. Review.
Cited by
-
The application of artificial intelligence for Rapid On-Site Evaluation during flexible bronchoscopy.Front Oncol. 2024 Mar 11;14:1360831. doi: 10.3389/fonc.2024.1360831. eCollection 2024. Front Oncol. 2024. PMID: 38529376 Free PMC article.
-
SST-editing: in silico spatial transcriptomic editing at single-cell resolution.Bioinformatics. 2024 Mar 4;40(3):btae077. doi: 10.1093/bioinformatics/btae077. Bioinformatics. 2024. PMID: 38341653 Free PMC article.
-
Evaluating Vision and Pathology Foundation Models for Computational Pathology: A Comprehensive Benchmark Study.Res Sq [Preprint]. 2025 Jul 4:rs.3.rs-6823810. doi: 10.21203/rs.3.rs-6823810/v1. Res Sq. 2025. PMID: 40630532 Free PMC article. Preprint.
References
-
- Coudray N., Ocampo P.S., Sakellaropoulos T., Narula N., Snuderl M., Fenyö D., Moreira A.L., Razavian N., Tsirigos A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018;24:1559–1567. doi: 10.1038/s41591-018-0177-5. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous