LRRK2 Gly2019Ser Mutation Promotes ER Stress via Interacting with THBS1/TGF-β1 in Parkinson's Disease
- PMID: 37672887
- PMCID: PMC10602550
- DOI: 10.1002/advs.202303711
LRRK2 Gly2019Ser Mutation Promotes ER Stress via Interacting with THBS1/TGF-β1 in Parkinson's Disease
Abstract
The gene mutations of LRRK2, which encodes leucine-rich repeat kinase 2 (LRRK2), are associated with one of the most prevalent monogenic forms of Parkinson's disease (PD). However, the potential effectors of the Gly2019Ser (G2019S) mutation remain unknown. In this study, the authors investigate the effects of LRRK2 G2019S on endoplasmic reticulum (ER) stress in induced pluripotent stem cell (iPSC)-induced dopamine neurons and explore potential therapeutic targets in mice model. These findings demonstrate that LRRK2 G2019S significantly promotes ER stress in neurons and mice. Interestingly, inhibiting LRRK2 activity can ameliorate ER stress induced by the mutation. Moreover, LRRK2 mutation can induce ER stress by directly interacting with thrombospondin-1/transforming growth factor beta1 (THBS1/TGF-β1). Inhibition of LRRK2 kinase activity can effectively suppress ER stress and the expression of THBS1/TGF-β1. Knocking down THBS1 can rescue ER stress by interacting with TGF-β1 and behavior burden caused by the LRRK2 mutation, while suppression of TGF-β1 has a similar effect. Overall, it is demonstrated that the LRRK2 mutation promotes ER stress by directly interacting with THBS1/TGF-β1, leading to neural death in PD. These findings provide valuable insights into the pathogenesis of PD, highlighting potential diagnostic markers and therapeutic targets.
Keywords: LRRK2 G2019S; Parkinson's disease; TGF-β1; THBS1; endoplasmic reticulum (ER) stress.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- a) Yao L., Ye Y., Mao H., Lu F., He X., Lu G., Zhang S., J. Neuroinflammation 2018, 15, 13; - PMC - PubMed
- b) Yao L., Zhu Z., Wu J., Zhang Y., Zhang H., Sun X., Qian C., Wang B., Xie L., Zhang S., Lu G., FASEB J. 2019, 33, 8648; - PubMed
- c) Yao L., Lin K., Zheng Z., Koc S., Zhang S., Lu G., Skutella T., Oxid. Med. Cell. Longevity 2022, 2022, 9235358; - PMC - PubMed
- d) Zheng Z., Zhang S., Zhang H., Gao Z., Wang X., Liu X., Xue C., Yao L., Lu G., Oxid. Med. Cell. Longevity 2022, 2022, 7965433; - PMC - PubMed
- e) Zhang H., Yao L., Zheng Z., Koc S., Lu G., Pharmaceuticals 2022, 15, 811. - PMC - PubMed
-
- Tolosa E., Vila M., Klein C., Rascol O., Nat. Rev. Neurol. 2020, 16, 97. - PubMed
-
- a) Di Maio R., Hoffman E. K., Rocha E. M., Keeney M. T., Sanders L. H., De Miranda B. R., Zharikov A., Van Laar A., Stepan A. F., Lanz T. A., Kofler J. K., Burton E. A., Alessi D. R., Hastings T. G., Greenamyre J. T., Sci. Transl. Med. 2018, 10, aar5429; - PMC - PubMed
- b) Ho P. W., Leung C. T., Liu H., Pang S. Y., Lam C. S., Xian J., Li L., Kung M. H., Ramsden D. B., Ho S. L., Autophagy 2020, 16, 347. - PMC - PubMed
-
- Lees A. J., Hardy J., Revesz T., Lancet 2009, 373, 2055. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous