Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb;61(2):982-1001.
doi: 10.1007/s12035-023-03599-y. Epub 2023 Sep 7.

Reinstated Activity of Human Tau-induced Enhanced Insulin Signaling Restricts Disease Pathogenesis by Regulating the Functioning of Kinases/Phosphatases and Tau Hyperphosphorylation in Drosophila

Affiliations

Reinstated Activity of Human Tau-induced Enhanced Insulin Signaling Restricts Disease Pathogenesis by Regulating the Functioning of Kinases/Phosphatases and Tau Hyperphosphorylation in Drosophila

Pragati et al. Mol Neurobiol. 2024 Feb.

Abstract

Tauopathies such as Alzheimer's disease (AD), Frontotemporal dementia, and parkinsonism linked to chromosome 17 (FTDP-17), etc. are characterized by tau hyperphosphorylation and distinguished accumulation of paired helical filaments (PHFs)/or neurofibrillary tangles (NFTs) in a specific-neuronal subset of the brain. Among different reported risk factors, type 2 diabetes (T2D) has gained attention due to its correlation with tau pathogenesis. However, mechanistic details and the precise contribution of insulin pathway in tau etiology is still debatable. We demonstrate that expression of human tau causes overactivation of insulin pathway in Drosophila disease models. We subsequently noted that tissue-specific downregulation of insulin signaling or even exclusive reduction of its growth-promoting sub-branch effectively reinstates the overactivated insulin signaling pathway in human tau expressing cells, which in turn restricts pathogenic tau hyperphosphorylation and aggregate formation. It was further noted that restored tau phosphorylation was achieved due to a reestablished balance between the levels of different kinase(s) (GSK3β and ERK/P38 MAP kinase) and phosphatase (PP2A). Taken together, our study demonstrates a precise involvement of the insulin pathway and associated molecular events in the pathogenesis of human tauopathies in Drosophila, which will be immensely helpful in developing novel therapeutic options against these devastating human brain disorders. Moreover, our study reveals an interesting link between tau etiology and aberrant insulin signaling, which is a characteristic feature of Type 2 Diabetes.

Keywords: Drosophila; Gsk3β; Insulin signaling; Tauopathies, Neurodegeneration.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159. https://doi.org/10.1146/annurev.neuro.24.1.1121 - DOI - PubMed
    1. Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13. https://doi.org/10.1186/1750-1326-4-13 - DOI - PubMed - PMC
    1. Tenreiro S, Eckermann K, Outeiro TF (2014) Protein phosphorylation in neurodegeneration: friend or foe. Front Mol Neurosci 7:42. https://doi.org/10.3389/fnmol.2014.00042 - DOI - PubMed - PMC
    1. Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GVW, Quintanilla RA (2019) It’s all about tau. Prog Neurobiol 175:54–76. https://doi.org/10.1016/j.pneurobio.2018.12.005 - DOI - PubMed
    1. Toral-Rios D, Pichardo-Rojas PS, Alonso-Vanegas M, Campos-Peña V (2020) GSK3β and tau protein in Alzheimer’s Disease and Epilepsy. Front Cell Neurosci 14:19. https://doi.org/10.3389/fncel.2020.00019 - DOI - PubMed - PMC

LinkOut - more resources