Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023;83(9):778.
doi: 10.1140/epjc/s10052-023-11862-8. Epub 2023 Sep 4.

Search for tri-nucleon decays of 76Ge in GERDA

M Agostini  1 A Alexander  1 G Araujo  2 A M Bakalyarov  3 M Balata  4 I Barabanov  5 L Baudis  2 C Bauer  6 S Belogurov  5   7   8 A Bettini  9   10 L Bezrukov  5 V Biancacci  9   10 E Bossio  11 V Bothe  6 R Brugnera  9   10 A Caldwell  12 S Calgaro  9   10 C Cattadori  13 A Chernogorov  7   3 P-J Chiu  2 T Comellato  11 V D'Andrea  14 E V Demidova  7 A Di Giacinto  4 N Di Marco  15 E Doroshkevich  5 F Fischer  12 M Fomina  16 A Gangapshev  6   5 A Garfagnini  9   10 C Gooch  12 P Grabmayr  17 V Gurentsov  5 K Gusev  16   3   11 J Hakenmüller  6   18 S Hemmer  10 W Hofmann  6 M Hult  19 L V Inzhechik  5   20 J Janicskó Csáthy  11   21 J Jochum  17 M Junker  4 V Kazalov  5 Y Kermaïdic  6 H Khushbakht  17 T Kihm  6 K Kilgus  17 I V Kirpichnikov  7 A Klimenko  16   6   22 K T Knöpfle  6 O Kochetov  16 V N Kornoukhov  5   8 P Krause  11 V V Kuzminov  5 M Laubenstein  4 M Lindner  6 I Lippi  10 A Lubashevskiy  16 B Lubsandorzhiev  5 G Lutter  19 C Macolino  14 B Majorovits  12 W Maneschg  6 L Manzanillas  12 G Marshall  1 M Misiaszek  23 M Morella  15 Y Müller  2 I Nemchenok  16   22 M Neuberger  11 L Pandola  24 K Pelczar  19 L Pertoldi  11   10 P Piseri  25 A Pullia  25 L Rauscher  17 M Redchuk  10 S Riboldi  25 N Rumyantseva  16   3 C Sada  9   10 S Sailer  6 F Salamida  14 S Schönert  11 J Schreiner  6 M Schütt  6 A-K Schütz  17 O Schulz  12 M Schwarz  11 B Schwingenheuer  6 O Selivanenko  5 E Shevchik  16 M Shirchenko  16 L Shtembari  12 H Simgen  6 A Smolnikov  16   6 D Stukov  3 S Sullivan  6 A A Vasenko  7 A Veresnikova  5 C Vignoli  4 K von Sturm  9   10 T Wester  26 C Wiesinger  12 M Wojcik  23 E Yanovich  5 B Zatschler  26 I Zhitnikov  16 S V Zhukov  3 D Zinatulina  16 A Zschocke  17 A J Zsigmond  12 K Zuber  26 G Zuzel  23 GERDA collaboration
Affiliations

Search for tri-nucleon decays of 76Ge in GERDA

M Agostini et al. Eur Phys J C Part Fields. 2023.

Abstract

We search for tri-nucleon decays of 76Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to 73Cu, 73Zn, and 73Ga nuclei, respectively. These nuclei are unstable and eventually proceed by the beta decay of 73Ga to 73Ge (stable). We search for the 73Ga decay exploiting the fact that it dominantly populates the 66.7 keV 73mGa state with half-life of 0.5 s. The nnn-decays of 76Ge that proceed via 73mGe are also included in our analysis. We find no signal candidate and place a limit on the sum of the decay widths of the inclusive tri-nucleon decays that corresponds to a lower lifetime limit of 1.2×1026 yr (90% credible interval). This result improves previous limits for tri-nucleon decays by one to three orders of magnitude.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Scheme of the potential channels for tri-nucleon decay of 76Ge including the beta decays for the unstable daughter nuclei along with their half lives, beta decay Q values and neutron thresholds (all energies in keV and not to scale). Also shown are the metastable levels of 73Ge with energies of 66.7 keV and 13.3 keV and half lives of 0.499 s and 2.95 μs, respectively. Figure adapted from [4]
Fig. 2
Fig. 2
Cross sections of the GERDA experimental apparatus and an enlarged view of the central part (right), the germanium detector array enclosed by the LAr veto system [7]
Fig. 3
Fig. 3
Energy levels of 73Ge populated by 73Ga beta decay [14]; see [4] for an update of some branching ratios, e.g. 5.9% to the 66.7 keV level. The ground state of 73Ge is never directly populated
Fig. 4
Fig. 4
Simulated waveform of the decay of the 66.7 keV metastable state in 73Ge to the ground state via the intermediate 13.3 keV state. Details of the response of the amplifier to the signal are omitted
Fig. 5
Fig. 5
Monte Carlo energy spectrum corresponding to E1, the energy of the 73Ga decay to 73Ge and the subsequent gamma transition to its metastable state. The step at about 300 keV can be explained by the level scheme of 73Ge: 6% of 73Ga decays directly populate the metastable state. 78.6% of decays will populate a state at 364 keV which can transition to the metastable state releasing  297 keV which accounts for the step
Fig. 6
Fig. 6
Monte Carlo energy spectrum corresponding to E2, the energy released in the decay of the 66.7 keV metastable state of 73Ge. Approximately 99% of entries are contained within the peak at 66.7 keV
Fig. 7
Fig. 7
Energy cut optimisation plot showing the background rejection, the signal survival fractions and the performance metric as a function of the energy threshold |E1-E2|. The signal efficiency for the optimum is 87% with 93% background rejection at an energy difference threshold of 204 keV. The metric curve is the product of the signal and background curves
Fig. 8
Fig. 8
Risetime optimisation plot for BEGe detectors. The signal efficiency for the optimum is 91% with 93% background rejection at a time difference threshold of 500 ns. The other detector types exhibit similar performance
Fig. 9
Fig. 9
GERDA energy spectrum from 20 keV to 1600 keV before any analysis cuts. The contributions from 39Ar, two neutrino double beta (2νββ) decay and 40,42K are indicated. Bottom: Surviving E2 events after applying our search procedure with energy, rise time and LAr veto cuts. The region of interest (ROI) is indicated. The expected number of accidental events up to 1600 keV is about 2

References

    1. Sakharov AD. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. JETP Lett. 1967;5(5):24–27.
    1. Babu KS, Gogoladze I, Wang K. Gauged baryon parity and nucleon stability. Phys. Lett. B. 2003;570(1–2):32–38. doi: 10.1016/j.physletb.2003.07.036. - DOI
    1. R.L. Workman et al., Review of Particle Physics. PTEP 2022, 083C01 (2022). 10.1093/ptep/ptac097
    1. B. Singh, J. Chen, Nuclear data sheets for A=73. Nuclear Data Sheets 158 (2019). 10.1016/j.nds.2019.02.006. https://www.osti.gov/biblio/1594870
    1. Heeck J, Takhistov V. Inclusive nucleon decay searches as a frontier of baryon number violation. Phys. Rev. D. 2020;101(1):015005. doi: 10.1103/PhysRevD.101.015005. - DOI

LinkOut - more resources