Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov:140:106825.
doi: 10.1016/j.bioorg.2023.106825. Epub 2023 Sep 3.

LC/HRESI-MS/MS screening, phytochemical characterization, and in vitro antioxidant and cytotoxic potential of Jatropha integerrima Jacq. extracts

Affiliations

LC/HRESI-MS/MS screening, phytochemical characterization, and in vitro antioxidant and cytotoxic potential of Jatropha integerrima Jacq. extracts

Mohamed Marzouk et al. Bioorg Chem. 2023 Nov.

Erratum in

Abstract

Avoiding the probable dangerous side effects of synthetic drugs, this study aims the identification of natural antioxidant and antitumor agents from J. integerrima leaf and floral extracts. A highly efficient and fast UPLC/ESI-qTOF-HRMS/MS screening has led to characterization of 30 flavonoids, i.e. 12 flavonols, 6 flavones, 3 dihydroflavonols, 4 anthocyanins (flower), 2 dihydroflavonols, and 3 isoflavones from both J. integerrima extracts. In addition, six major polyphenols were identified for the first time from leaf extract, and their structures were established as apigenin 7-O-β-d-neohesperidoside (rhoifolin, 1), apigenin 8-C-β-D-4C1-glucopyranoside (vitexin, 2), luteolin 6-C-β-D-4C1-glucopyranoside (isoorientin, 3), 6,6″-di-C-β-D-4C1-glucopyranosyl-methylene-biapigenin (Jatrophenol-I, 4), (E)-p-coumaric acid methyl ester (5), and (E)-ferulic acid methyl ester (6) with HRESI-MS and NMR analyses. The in vitro antioxidant activity of both extracts and major pure isolates was decided using DPPH, reducing power capability, FRAP, and ABTS radical scavenging assays, and their in vitro cytotoxicity was evaluated on Ehrlich ascites carcinoma cells (EACC), as well.The flower extract and compound 3 have shown the strongest antioxidant and cytotoxic effects. At low concentrations (25 µg/mL), they showed the highest DPPH radical scavenging ability (79.63 ± 0.42 and 76.20 ± 0.35%) regarding BHA (91.44 ± 0.29% at 100 µg/mL). In the parameter of absorbance, they exhibited higher reducing power ability (1.402 ± 0.025 and 1.178 ± 0.019%) than that of BHA (0.975 ± 0.013 at 100 µg/mL). Similarly, they proved superior FRAP (1427 ± 9.61 and 1377 ± 13.61 µmol Trolox/ 100 g) and highest ABTS activity (80.19 ± 0.55 and 68.38 ± 0.19%), which are higher activities compared to BHA (88.42 ± 0.24% at 100 µg/mL). Furthermore, all samples gave noticeable cytotoxicity at the same concentration (100 µg/mL), especially the flower extract and compound 3 which showed a relatively high effect on the viability of EACC (81.12 ± 0.24 and 77.21 ± 0.76 %, respectively) relative to vincristine reference drug (90.64 ± 0.39 %). Based on the findings, the extracts and isolates can be considered as potent antioxidant and cytotoxic natural agents, especially flower extract and isoorientin (3), which may supply novel insight into their likely application in pharmaceutical industries.

Keywords: Antioxidant activity; Cytotoxicity; Ehrlich ascites carcinoma; Jatropha; LC-MS/MS; Phytochemical profiling.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources