Leveraging mass detection to simultaneously quantify surfactant content and degradation mode for highly concentrated biopharmaceuticals
- PMID: 37688908
- DOI: 10.1016/j.jpba.2023.115651
Leveraging mass detection to simultaneously quantify surfactant content and degradation mode for highly concentrated biopharmaceuticals
Abstract
Non-ionic surfactants are commonly used in parenteral protein formulations and include polysorbate 20, polysorbate 80 and poloxamer188. Recently, quantification and characterization of surfactants has generated considerable interest due to their connection to visible particle formation, a critical quality attribute for parenteral formulations. Typically, surfactant quantification is performed by mixed mode chromatography with evaporative light scattering detection (ELSD) or charged aerosol detection (CAD). However, these methods often suffer from loss of specificity in highly concentrated protein formulations. Here we present a mixed mode chromatography method using single quad mass detection, overcoming current limitations for highly concentrated proteins. In addition to content determination of intact surfactants, this method allows to quantify and characterize the predominant degradation patterns of polysorbates within a single measurement. Formulations with up to 200 mg/mL active pharmaceutical product (API) containing surfactant levels between 0.16 and 0.64 mg/mL were tested during method qualification. The obtained results for linearity (r > 0.99), precision (max. 3.8 % RSD) and accuracy (96-116 % recovery) meet current requirements for pharmaceutical products as defined in ICH Q2.
Keywords: Biotherapeutic formulation; Content determination; Method development; Method qualification; Single quad MS detector; Surfactant.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
LinkOut - more resources
Full Text Sources
Miscellaneous
