This is a preprint.
Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk
- PMID: 37693535
- PMCID: PMC10491144
- DOI: 10.1101/2023.08.28.555210
Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk
Update in
-
Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk.Cell Rep. 2024 Jan 23;43(1):113595. doi: 10.1016/j.celrep.2023.113595. Epub 2023 Dec 19. Cell Rep. 2024. PMID: 38117654 Free PMC article.
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK), TrkB, and the G protein-coupled receptor (GPCR), metabotropic glutamate receptor 5 (mGluR5), together mediate a novel form of hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode-switch that drives BDNF-dependent sustained, oscillatory Ca 2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gα q -GTP, released by mGluR5, to enable a previously unidentified form of physiologically relevant RTK/GPCR crosstalk.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources