This is a preprint.
Natural genetic variation quantitatively regulates heart rate and dimension
- PMID: 37693611
- PMCID: PMC10491305
- DOI: 10.1101/2023.09.01.555906
Natural genetic variation quantitatively regulates heart rate and dimension
Update in
-
Natural genetic variation quantitatively regulates heart rate and dimension.Nat Commun. 2025 Apr 30;16(1):4062. doi: 10.1038/s41467-025-59425-7. Nat Commun. 2025. PMID: 40307248 Free PMC article.
Abstract
The polygenic contribution to heart development and function along the health-disease continuum remains unresolved. To gain insight into the genetic basis of quantitative cardiac phenotypes, we utilize highly inbred Japanese rice fish models, Oryzias latipes, and Oryzias sakaizumii. Employing automated quantification of embryonic heart rates as core metric, we profiled phenotype variability across five inbred strains. We observed maximal phenotypic contrast between individuals of the HO5 and the HdrR strain. HO5 showed elevated heart rates associated with embryonic ventricular hypoplasia and impaired adult cardiac function. This contrast served as the basis for genome-wide mapping. In a segregation population of 1192 HO5 x HdrR F2 embryos, we mapped 59 loci (173 genes) associated with heart rate. Experimental validation of the top 12 candidate genes in loss-of-function models revealed their causal and distinct impact on heart rate, development, ventricle size, and arrhythmia. Our study uncovers new diagnostic and therapeutic targets for developmental and electrophysiological cardiac diseases and provides a novel scalable approach to investigate the intricate genetic architecture of the vertebrate heart.
Conflict of interest statement
Competing interests: Authors declare that they have no competing interests.
Figures





Similar articles
-
Natural genetic variation quantitatively regulates heart rate and dimension.Nat Commun. 2025 Apr 30;16(1):4062. doi: 10.1038/s41467-025-59425-7. Nat Commun. 2025. PMID: 40307248 Free PMC article.
-
Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.J Vis Exp. 2023 Oct 18;(200). doi: 10.3791/6576. J Vis Exp. 2023. PMID: 37851522
-
Strain-Specific Liver Metabolite Profiles in Medaka.Metabolites. 2021 Oct 29;11(11):744. doi: 10.3390/metabo11110744. Metabolites. 2021. PMID: 34822402 Free PMC article.
-
Medakafish as a model system for vertebrate developmental genetics.Bioessays. 2000 May;22(5):487-95. doi: 10.1002/(SICI)1521-1878(200005)22:5<487::AID-BIES11>3.0.CO;2-8. Bioessays. 2000. PMID: 10797489 Review.
-
Sex determination and sex chromosome evolution in the medaka, Oryzias latipes, and the platyfish, Xiphophorus maculatus.Cytogenet Genome Res. 2002;99(1-4):170-7. doi: 10.1159/000071590. Cytogenet Genome Res. 2002. PMID: 12900561 Review.
Cited by
-
Characterizing medaka visual features using a high-throughput optomotor response assay.PLoS One. 2024 Jun 28;19(6):e0302092. doi: 10.1371/journal.pone.0302092. eCollection 2024. PLoS One. 2024. PMID: 38941325 Free PMC article.
References
-
- Kearney D. L., The Pathological Spectrum of Left-Ventricular Hypoplasia. Semin. Cardiothorac. Vasc. Anesthesia 17, 105–116 (2013). - PubMed
-
- Gehrmann J., Krasemann T., Kehl H. G., Vogt J., Hypoplastic Left-Heart Syndrome The First Description of the Pathophysiology in 1851; Translation of a Publication by Dr. Bardeleben From Giessen, Germany. Chest 120, 1368–1371 (2001). - PubMed
-
- Hinton R. B., Martin L. J., Tabangin M. E., Mazwi M. L., Cripe L. H., Benson D. W., Hypoplastic Left Heart Syndrome Is Heritable. J. Am. Coll. Cardiol. 50, 1590–1595 (2007). - PubMed
-
- Krane M., Dreßen M., Santamaria G., My I., Schneider C. M., Dorn T., Laue S., Mastantuono E., Berutti R., Rawat H., Gilsbach R., Schneider P., Lahm H., Schwarz S., Doppler S. A., Paige S., Puluca N., Doll S., Neb I., Brade T., Zhang Z., Abou-Ajram C., Northoff B., Holdt L. M., Sudhop S., Sahara M., Goedel A., Dendorfer A., Tjong F. V. Y., Rijlaarsdam M. E., Cleuziou J., Lang N., Kupatt C., Bezzina C., Lange R., Bowles N. E., Mann M., Gelb B. D., Crotti L., Hein L., Meitinger T., Wu S., Sinnecker D., Gruber P. J., Laugwitz K.-L., Moretti A., Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome. Circulation 144, 1409–1428 (2021). - PMC - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous