Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct;622(7982):376-382.
doi: 10.1038/s41586-023-06609-0. Epub 2023 Sep 11.

Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir

Affiliations

Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir

Yinkai Duan et al. Nature. 2023 Oct.

Abstract

Nirmatrelvir is a specific antiviral drug that targets the main protease (Mpro) of SARS-CoV-2 and has been approved to treat COVID-191,2. As an RNA virus characterized by high mutation rates, whether SARS-CoV-2 will develop resistance to nirmatrelvir is a question of concern. Our previous studies have shown that several mutational pathways confer resistance to nirmatrelvir, but some result in a loss of viral replicative fitness, which is then compensated for by additional alterations3. The molecular mechanisms for this observed resistance are unknown. Here we combined biochemical and structural methods to demonstrate that alterations at the substrate-binding pocket of Mpro can allow SARS-CoV-2 to develop resistance to nirmatrelvir in two distinct ways. Comprehensive studies of the structures of 14 Mpro mutants in complex with drugs or substrate revealed that alterations at the S1 and S4 subsites substantially decreased the level of inhibitor binding, whereas alterations at the S2 and S4' subsites unexpectedly increased protease activity. Both mechanisms contributed to nirmatrelvir resistance, with the latter compensating for the loss in enzymatic activity of the former, which in turn accounted for the restoration of viral replicative fitness, as observed previously3. Such a profile was also observed for ensitrelvir, another clinically relevant Mpro inhibitor. These results shed light on the mechanisms by which SARS-CoV-2 evolves to develop resistance to the current generation of protease inhibitors and provide the basis for the design of next-generation Mpro inhibitors.

PubMed Disclaimer

References

    1. Owen, D. R. et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 374, 1586–1593 (2021). - DOI - PubMed
    1. Hammond, J. et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. New Engl. J. Med. 386, 1397–1408 (2022). - DOI - PubMed
    1. Iketani, S. et al. Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature https://doi.org/10.1038/s41586-022-05514-2 (2022).
    1. Wang, Q. et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature https://doi.org/10.1038/s41586-022-05053-w (2022).
    1. Wong, C. K. H. et al. Real-world effectiveness of early molnupiravir or nirmatrelvir–ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong’s omicron BA.2 wave: a retrospective cohort study. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(22)00507-2 (2022).

Publication types

MeSH terms