Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Nov;22(11):895-916.
doi: 10.1038/s41573-023-00774-7. Epub 2023 Sep 11.

Artificial intelligence for natural product drug discovery

Michael W Mullowney #  1 Katherine R Duncan #  2 Somayah S Elsayed #  3 Neha Garg #  4 Justin J J van der Hooft #  5   6 Nathaniel I Martin #  7 David Meijer #  5 Barbara R Terlouw #  5 Friederike Biermann  5   8   9 Kai Blin  10 Janani Durairaj  11 Marina Gorostiola González  12   13 Eric J N Helfrich  8   9 Florian Huber  14 Stefan Leopold-Messer  15 Kohulan Rajan  16 Tristan de Rond  17 Jeffrey A van Santen  18 Maria Sorokina  19   20 Marcy J Balunas  21   22 Mehdi A Beniddir  23 Doris A van Bergeijk  3 Laura M Carroll  24 Chase M Clark  25 Djork-Arné Clevert  26 Chris A Dejong  27 Chao Du  3 Scarlet Ferrinho  28 Francesca Grisoni  29   30 Albert Hofstetter  31 Willem Jespers  12 Olga V Kalinina  32   33   34 Satria A Kautsar  35 Hyunwoo Kim  36 Tiago F Leao  37 Joleen Masschelein  38   39 Evan R Rees  25 Raphael Reher  40   41 Daniel Reker  42   43 Philippe Schwaller  44 Marwin Segler  45 Michael A Skinnider  27   46 Allison S Walker  47   48 Egon L Willighagen  49 Barbara Zdrazil  50 Nadine Ziemert  51 Rebecca J M Goss  28 Pierre Guyomard  52 Andrea Volkamer  34   53 William H Gerwick  54 Hyun Uk Kim  55 Rolf Müller  32   56   57   58 Gilles P van Wezel  3   59 Gerard J P van Westen  60 Anna K H Hirsch  61   62   63   64 Roger G Linington  65 Serina L Robinson  66 Marnix H Medema  67   68
Affiliations
Free article
Review

Artificial intelligence for natural product drug discovery

Michael W Mullowney et al. Nat Rev Drug Discov. 2023 Nov.
Free article

Abstract

Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.

PubMed Disclaimer

References

    1. Dobson, P. D., Patel, Y. & Kell, D. B. ‘Metabolite-likeness’ as a criterion in the design and selection of pharmaceutical drug libraries. Drug Discov. Today 14, 31–40 (2009). - PubMed - DOI
    1. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020). - PubMed - DOI
    1. Koehn, F. E. & Carter, G. T. The evolving role of natural products in drug discovery. Nat. Rev. Drug. Discov. 4, 206–220 (2005). - PubMed - DOI
    1. Terlouw, B. R. et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603–D610 (2023). - PubMed - DOI
    1. Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022). - PubMed - DOI

Publication types

Substances