Gemfibrozil Alleviates Cognitive Impairment by Inhibiting Ferroptosis of Astrocytes via Restoring the Iron Metabolism and Promoting Antioxidant Capacity in Type 2 Diabetes
- PMID: 37697219
- DOI: 10.1007/s12035-023-03589-0
Gemfibrozil Alleviates Cognitive Impairment by Inhibiting Ferroptosis of Astrocytes via Restoring the Iron Metabolism and Promoting Antioxidant Capacity in Type 2 Diabetes
Abstract
Diabetes-associated cognitive dysfunction (DACD) is considered a significant complication of diabetes and manifests as cognitive impairment. Astrocytes are vital to the brain energy metabolism and cerebral antioxidant status. Ferroptosis has been implicated in cognitive impairment, but it is unclear whether the ferroptosis of astrocytes is involved in the progression of DACD. PPARA/PPARα (peroxisome proliferator-activated receptor alpha) is a transcription factor that regulates glucose and lipid metabolism in the brain. In this study, we demonstrated that high glucose promoted ferroptosis of astrocytes by disrupting iron metabolism and suppressing the xCT/GPX4-regulated pathway in diabetic mice and astrocytes cultured in high glucose. Administration of gemfibrozil, a known PPARα agonist, inhibited ferroptosis and improved memory impairment in db/db mice. Gemfibrozil also prevented the accumulation of lipid peroxidation products and lethal reactive oxygen species induced by iron deposition in astrocytes and substantially reduced neuronal and synaptic loss. Our findings demonstrated that ferroptosis of astrocytes is a novel mechanism in the development of DACD. Additionally, our study revealed the therapeutic effect of gemfibrozil in preventing and treating DACD by inhibiting ferroptosis.
Keywords: Astrocyte; Cognitive impairment; Diabetes; Ferroptosis; Gemfibrozil.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
References
- 
    - Brussels B (2021) International Diabetes Federation. IDF Diabetes Atlas, 10th edn. International Diabetes Federation
 
- 
    - Biessels GJ, Whitmer RA (2020) Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia 63(1):3–9. https://doi.org/10.1007/s00125-019-04977-9 - DOI - PubMed
 
- 
    - Chatterjee S, Peters SA, Woodward M, Mejia Arango S, Batty GD, Beckett N, Beiser A, Borenstein AR et al (2016) Type 2 Diabetes as a Risk Factor for Dementia in Women Compared With Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia. Diabetes Care 39(2):300–307. https://doi.org/10.2337/dc15-1588
 
- 
    - Xu W, Caracciolo B, Wang HX, Winblad B, Backman L, Qiu C, Fratiglioni L (2010) Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes 59(11):2928–2935. https://doi.org/10.2337/db10-0539 - DOI - PubMed - PMC
 
- 
    - Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042 - DOI - PubMed - PMC
 
MeSH terms
Substances
Grants and funding
LinkOut - more resources
- Full Text Sources
- Medical
- Miscellaneous
 
        