Augmented liver pathology: artificial intelligence and the assessment of hepatocellular neoplasms
- PMID: 37698049
- DOI: 10.1111/his.15020
Augmented liver pathology: artificial intelligence and the assessment of hepatocellular neoplasms
Comment on
-
Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images.Gastroenterology. 2022 Jun;162(7):1948-1961.e7. doi: 10.1053/j.gastro.2022.02.025. Epub 2022 Feb 22. Gastroenterology. 2022. PMID: 35202643
References
-
- Salto-Tellez M, Maxwell P, Hamilton P. Artificial intelligence-the third revolution in pathology. Histopathology 2019; 74; 372-376.
-
- Calderaro J, Kather JN. Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers. Gut 2021; 70; 1183-1193.
-
- Berbis MA, McClintock DS, Bychkov A et al. Computational pathology in 2030: a Delphi study forecasting the role of AI in pathology within the next decade. eBioMedicine 2023; 88; 104427.
-
- Iyer JS, Pokkalla H, Biddle-Snead C et al. AI-based histologic scoring enables automated and reproducible assessment of enrolment criteria and endpoints in NASH clinical trials. medRxiv 2023. https://doi.org/10.1101/2023.04.20.23288534.
-
- Cheng N, Ren Y, Zhou J et al. Deep learning-based classification of hepatocellular nodular lesions on whole-slide histopathologic images. Gastroenterology 2022; 162; 1948-1961.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
