Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 3;52(38):13608-13617.
doi: 10.1039/d3dt02255b.

IPr*Oxa - a new class of sterically-hindered, wingtip-flexible N,C-chelating oxazole-donor N-heterocyclic carbene ligands

Affiliations

IPr*Oxa - a new class of sterically-hindered, wingtip-flexible N,C-chelating oxazole-donor N-heterocyclic carbene ligands

Pamela Podchorodecka et al. Dalton Trans. .

Abstract

N-heterocyclic carbenes (NHCs) have emerged as a major direction in ancillary ligand development for stabilization of reactive metal centers in inorganic and organometallic chemistry. In particular, wingtip-flexible NHCs have attracted significant attention due to their unique ability to provide a sterically-demanding environment for transition metals in various oxidation states. Herein, we report a new class of sterically-hindered, wingtip-flexible NHC ligands that feature N,C-chelating oxazole donors. These ligands are readily accessible through a modular arylation of oxazole derivatives. We report their synthesis and complete structural and electronic characterization. The evaluation of steric, electron-donating and π-accepting properties and coordination chemistry to Ag(I), Pd(II) and Rh(I) is described. Preliminary studies of catalytic activity in Ag, Pd and Rh-catalyzed coupling and hydrosilylation reactions are presented. This study establishes the fluxional behavior of a freely-rotatable oxazole unit, wherein the oxazolyl ring adjusts to the steric and electronic environment of the metal center. Considering the tremendous impact of sterically-hindered NHCs and their potential to stabilize reactive metals by N-chelation, we expect that this class of NHC ligands will be of broad interest in inorganic and organometallic chemistry.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources