Recent Advances in Anti-Atherosclerosis and Potential Therapeutic Targets for Nanomaterial-Derived Drug Formulations
- PMID: 37698552
- PMCID: PMC10582432
- DOI: 10.1002/advs.202302918
Recent Advances in Anti-Atherosclerosis and Potential Therapeutic Targets for Nanomaterial-Derived Drug Formulations
Abstract
Atherosclerosis, the leading cause of death worldwide, is responsible for ≈17.6 million deaths globally each year. Most therapeutic drugs for atherosclerosis have low delivery efficiencies and significant side effects, and this has hampered the development of effective treatment strategies. Diversified nanomaterials can improve drug properties and are considered to be key for the development of improved treatment strategies for atherosclerosis. The pathological mechanisms underlying atherosclerosis is summarized, rationally designed nanoparticle-mediated therapeutic strategies, and potential future therapeutic targets for nanodelivery. The content of this study reveals the potential and challenges of nanoparticle use for the treatment of atherosclerosis and highlights new effective design ideas.
Keywords: atherosclerosis; drug; nanodelivery; nanoparticles; therapeutic strategy.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects.ACS Appl Mater Interfaces. 2024 Oct 30;16(43):58072-58099. doi: 10.1021/acsami.4c13607. Epub 2024 Oct 21. ACS Appl Mater Interfaces. 2024. PMID: 39432384 Review.
-
The Opportunities and Challenges of Silica Nanomaterial for Atherosclerosis.Int J Nanomedicine. 2021 Jan 28;16:701-714. doi: 10.2147/IJN.S290537. eCollection 2021. Int J Nanomedicine. 2021. PMID: 33536755 Free PMC article. Review.
-
Recent Advances in Managing Atherosclerosis via Nanomedicine.Small. 2018 Jan;14(4). doi: 10.1002/smll.201702793. Epub 2017 Dec 14. Small. 2018. PMID: 29239134 Review.
-
Targeting macrophages using nanoparticles: a potential therapeutic strategy for atherosclerosis.J Mater Chem B. 2021 Apr 21;9(15):3284-3294. doi: 10.1039/d0tb02956d. Epub 2021 Mar 30. J Mater Chem B. 2021. PMID: 33881414 Review.
-
Targeting and therapeutic peptides in nanomedicine for atherosclerosis.Exp Biol Med (Maywood). 2016 May;241(9):891-8. doi: 10.1177/1535370216640940. Epub 2016 Mar 27. Exp Biol Med (Maywood). 2016. PMID: 27022138 Free PMC article. Review.
Cited by
-
Biomedical applications of stimuli-responsive nanomaterials.MedComm (2020). 2024 Jul 20;5(8):e643. doi: 10.1002/mco2.643. eCollection 2024 Aug. MedComm (2020). 2024. PMID: 39036340 Free PMC article. Review.
-
Minimally Invasive Injectable Gel for Local Immunotherapy of Liver and Gastric Cancer.Adv Sci (Weinh). 2024 Oct;11(38):e2405935. doi: 10.1002/advs.202405935. Epub 2024 Aug 8. Adv Sci (Weinh). 2024. PMID: 39116306 Free PMC article.
-
Combined Oxaliplatin with 5-Fluorouracil for Effective Chemotherapy Against Gastric Cancer in Animal Model.Int J Nanomedicine. 2025 Jun 17;20:7763-7780. doi: 10.2147/IJN.S520603. eCollection 2025. Int J Nanomedicine. 2025. PMID: 40546800 Free PMC article.
-
Biomimetic nanoparticles co-deliver hirudin and lumbrukinase to ameliorate thrombus and inflammation for atherosclerosis therapy.Asian J Pharm Sci. 2025 Feb;20(1):100990. doi: 10.1016/j.ajps.2024.100990. Epub 2024 Nov 2. Asian J Pharm Sci. 2025. PMID: 39917726 Free PMC article.
-
The Role of ROS in Atherosclerosis and ROS-Based Nanotherapeutics for Atherosclerosis: Atherosclerotic Lesion Targeting, ROS Scavenging, and ROS-Responsive Activity.ACS Omega. 2025 May 23;10(22):22366-22381. doi: 10.1021/acsomega.5c01865. eCollection 2025 Jun 10. ACS Omega. 2025. PMID: 40521521 Free PMC article. Review.
References
-
- Libby P., Ridker P. M., Hansson G. K., Nature 2011, 473, 317. - PubMed
-
- Libby P., Nature 2002, 420, 868. - PubMed
-
- Virani S. S., Alonso A., Benjamin E. J., Bittencourt M. S., Callaway C. W., Carson A. P., Chamberlain A. M., Chang A. R., Cheng S., Delling F. N., Djousse L., Elkind M. S. V., Ferguson J. F., Fornage M., Khan S. S., Kissela B. M., Knutson K. L., Kwan T. W., Lackland D. T., Lewis T. T., Lichtman J. H., Longenecker C. T., Loop M. S., Lutsey P. L., Martin S. S., Matsushita K., Moran A. E., Mussolino M. E., Perak A. M., Rosamond W. D., et al., Circulation 2020, 141, e139. - PubMed
-
- Null N., Reiner Z., Catapano A. L., De Backer G., Graham I., Taskinen M.‐R., Wiklund O., Agewall S., Alegria E., Chapman M. J., Durrington P., Erdine S., Halcox J., Hobbs R., Kjekshus J., Filardi P. P., Riccardi G., Storey R. F., Wood D., Bax J., Vahanian A., Auricchio A., Baumgartner H., Ceconi C., Dean V., Deaton C., Fagard R., Filippatos G., Funck‐Brentano C., Hasdai D., et al., Eur. Heart J. 2011, 32, 1769. - PubMed
-
- Nordestgaard B. G., Nicholls S. J., Langsted A., Ray K. K., Tybjærg‐Hansen A., Nat Rev Cardiol 2018, 15, 261. - PubMed
Publication types
MeSH terms
Grants and funding
- 20ZR1420000/Natural Science Foundation of Shanghai
- 21S21902100/Science and Technology Support Project in Biomedical Field of Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission
- 2021-HSD-8-6-001/Baoshan Zhaohui New Drug R & D and Transformation Functional Platform
LinkOut - more resources
Full Text Sources
Medical