Molecular mechanism of de novo replication by the Ebola virus polymerase
- PMID: 37699521
- DOI: 10.1038/s41586-023-06608-1
Molecular mechanism of de novo replication by the Ebola virus polymerase
Abstract
Non-segmented negative-strand RNA viruses, including Ebola virus (EBOV), rabies virus, human respiratory syncytial virus and pneumoviruses, can cause respiratory infections, haemorrhagic fever and encephalitis in humans and animals, and are considered a substantial health and economic burden worldwide1. Replication and transcription of the viral genome are executed by the large (L) polymerase, which is a promising target for the development of antiviral drugs. Here, using the L polymerase of EBOV as a representative, we show that de novo replication of L polymerase is controlled by the specific 3' leader sequence of the EBOV genome in an enzymatic assay, and that formation of at least three base pairs can effectively drive the elongation process of RNA synthesis independent of the specific RNA sequence. We present the high-resolution structures of the EBOV L-VP35-RNA complex and show that the 3' leader RNA binds in the template entry channel with a distinctive stable bend conformation. Using mutagenesis assays, we confirm that the bend conformation of the RNA is required for the de novo replication activity and reveal the key residues of the L protein that stabilize the RNA conformation. These findings provide a new mechanistic understanding of RNA synthesis for polymerases of non-segmented negative-strand RNA viruses, and reveal important targets for the development of antiviral drugs.
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Similar articles
-
Structural insights into the RNA-dependent RNA polymerase complexes from highly pathogenic Marburg and Ebola viruses.Nat Commun. 2025 Mar 31;16(1):3080. doi: 10.1038/s41467-025-58308-1. Nat Commun. 2025. PMID: 40164610 Free PMC article.
-
An RNA polymerase II-driven Ebola virus minigenome system as an advanced tool for antiviral drug screening.Antiviral Res. 2017 Oct;146:21-27. doi: 10.1016/j.antiviral.2017.08.005. Epub 2017 Aug 12. Antiviral Res. 2017. PMID: 28807685 Free PMC article.
-
Structure of the Ebola virus polymerase complex.Nature. 2022 Oct;610(7931):394-401. doi: 10.1038/s41586-022-05271-2. Epub 2022 Sep 28. Nature. 2022. PMID: 36171293 Free PMC article.
-
Towards a structural understanding of RNA synthesis by negative strand RNA viral polymerases.Curr Opin Struct Biol. 2016 Feb;36:75-84. doi: 10.1016/j.sbi.2016.01.002. Epub 2016 Jan 27. Curr Opin Struct Biol. 2016. PMID: 26826467 Review.
-
How does the polymerase of non-segmented negative strand RNA viruses commit to transcription or genome replication?J Virol. 2024 Aug 20;98(8):e0033224. doi: 10.1128/jvi.00332-24. Epub 2024 Jul 30. J Virol. 2024. PMID: 39078194 Free PMC article. Review.
Cited by
-
Ebola virus VP35 NNLNS motif modulates viral RNA synthesis and MIB2-mediated signaling.bioRxiv [Preprint]. 2025 Jul 27:2025.07.27.667045. doi: 10.1101/2025.07.27.667045. bioRxiv. 2025. PMID: 40777377 Free PMC article. Preprint.
-
Cryo-EM structure of Nipah virus RNA polymerase complex.Sci Adv. 2024 Dec 13;10(50):eadr7116. doi: 10.1126/sciadv.adr7116. Epub 2024 Dec 11. Sci Adv. 2024. PMID: 39661676 Free PMC article.
-
Cryo-EM structure of Nipah virus L-P polymerase complex.Nat Commun. 2024 Dec 3;15(1):10524. doi: 10.1038/s41467-024-54994-5. Nat Commun. 2024. PMID: 39627254 Free PMC article.
-
Cryo-EM structures of Nipah virus polymerases and high-throughput RdRp assay development enable anti-NiV drug discovery.Nat Commun. 2025 Jul 19;16(1):6655. doi: 10.1038/s41467-025-61764-4. Nat Commun. 2025. PMID: 40683863 Free PMC article.
-
Structures of the promoter-bound respiratory syncytial virus polymerase.Nature. 2024 Jan;625(7995):611-617. doi: 10.1038/s41586-023-06867-y. Epub 2023 Dec 20. Nature. 2024. PMID: 38123676 Free PMC article.
References
-
- Ouizougun-Oubari, M. & Fearns, R. Structures and mechanisms of nonsegmented, negative-strand RNA virus polymerases. Annu. Rev. Virol. https://doi.org/10.1146/annurev-virology-111821-102603 (2023).
-
- te Velthuis, A. J. W., Grimes, J. M. & Fodor, E. Structural insights into RNA polymerases of negative-sense RNA viruses. Nat. Rev. Microbiol. 19, 303–318 (2021). - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical