Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Aug 28;20(2):e20230076.
doi: 10.1590/1984-3143-AR2023-0076. eCollection 2023.

Paternal effects on fetal programming

Affiliations
Review

Paternal effects on fetal programming

Carl Robertson Dahlen et al. Anim Reprod. .

Abstract

Paternal programming is the concept that the environmental signals from the sire's experiences leading up to mating can alter semen and ultimately affect the phenotype of resulting offspring. Potential mechanisms carrying the paternal effects to offspring can be associated with epigenetic signatures (DNA methylation, histone modification and non-coding RNAs), oxidative stress, cytokines, and the seminal microbiome. Several opportunities exist for sperm/semen to be influenced during development; these opportunities are within the testicle, the epididymis, or accessory sex glands. Epigenetic signatures of sperm can be impacted during the pre-natal and pre-pubertal periods, during sexual maturity and with advancing sire age. Sperm are susceptible to alterations as dictated by their developmental stage at the time of the perturbation, and sperm and seminal plasma likely have both dependent and independent effects on offspring. Research using rodent models has revealed that many factors including over/under nutrition, dietary fat, protein, and ingredient composition (e.g., macro- or micronutrients), stress, exercise, and exposure to drugs, alcohol, and endocrine disruptors all elicit paternal programming responses that are evident in offspring phenotype. Research using livestock species has also revealed that sire age, fertility level, plane of nutrition, and heat stress can induce alterations in the epigenetic, oxidative stress, cytokine, and microbiome profiles of sperm and/or seminal plasma. In addition, recent findings in pigs, sheep, and cattle have indicated programming effects in blastocysts post-fertilization with some continuing into post-natal life of the offspring. Our research group is focused on understanding the effects of common management scenarios of plane of nutrition and growth rates in bulls and rams on mechanisms resulting in paternal programming and subsequent offspring outcomes. Understanding the implication of paternal programming is imperative as short-term feeding and management decisions have the potential to impact productivity and profitability of our herds for generations to come.

Keywords: epigenetics; fetal programming; offspring outcomes; paternal programming; sire.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest: The authors have no conflict of interest to declare.

References

    1. Aiken CE, Ozanne SE. Transgenerational developmental programming. Hum Reprod Update. 2014;20(1):63–75. doi: 10.1093/humupd/dmt043. - DOI - PubMed
    1. Aitken RJ. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction. 2020;159(4):R189–201. doi: 10.1530/REP-19-0452. - DOI - PubMed
    1. Alves MBR, Arruda RP, Batissaco L, Garcia-Oliveros LN, Gonzaga VHG, Nogueira VJM, Almeida FDS, Pinto SCC, Andrade GM, Perecin F, Silveira JC, Celeghini ECC. Changes in miRNA levels of sperm and small extracellular vesicles of seminal plasma are associated with transient scrotal heat stress in bulls. Theriogenology. 2021;161:26–40. doi: 10.1016/j.theriogenology.2020.11.015. - DOI - PubMed
    1. Ashapkin V, Suvorov A, Pilsner JR, Krawetz SA, Sergeyev O. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum Reprod Update. 2023;29(1):24–44. doi: 10.1093/humupd/dmac033. - DOI - PMC - PubMed
    1. Ayad B, Omolaoye TS, Louw N, Ramsunder Y, Skosana BT, Oyeipo PI, Du Plessis SS. Oxidative stress and male infertility: evidence from a research perspective. Front Reprod Health. 2022;4:822257. doi: 10.3389/frph.2022.822257. - DOI - PMC - PubMed

LinkOut - more resources