Macrophages and fibroblasts in foreign body reactions: How mechanical cues drive cell functions?
- PMID: 37701130
- PMCID: PMC10494263
- DOI: 10.1016/j.mtbio.2023.100783
Macrophages and fibroblasts in foreign body reactions: How mechanical cues drive cell functions?
Abstract
Biomaterials, when implanted in the human body, can induce a series of cell- and cytokine-related reactions termed foreign body reactions (FBRs). In the progression of FBRs, macrophages regulate inflammation and healing by polarizing to either a pro-inflammatory or pro-healing phenotype and recruit fibroblasts by secreting cytokines. Stimulated by the biomaterials, fibrotic capsule is formed eventually. The implant, along with its newly formed capsule, introduces various mechanical cues that influence cellular functions. Mechanosensing proteins, such as integrins or ion channels, transduce extracellular mechanical signals into cytoplasm biochemical signals in response to mechanical stimuli. Consequently, the morphology, migration mode, function, and polarization state of the cells are affected. Modulated by different intracellular signaling pathways and their crosstalk, the expression of fibrotic genes increases with fibroblast activation and fibroblast to myofibroblast transition under stiff or force stimuli. However, summarized in most current studies, the outcomes of macrophage polarization in the effect of different mechanical cues are inconsistent. The underlying mechanisms should be investigated with more advanced technology and considering more interfering aspects. Further research is needed to determine how to modulate the progression of fibrotic capsule formation in FBR artificially.
Keywords: Biomaterials; Fibroblasts; Fibrosis; Foreign body reaction; Macrophages; Mechanical cues.
© 2023 The Authors.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures





Similar articles
-
Beyond Encapsulation: Exploring Macrophage-Fibroblast Cross Talk in Implant-Induced Fibrosis.Tissue Eng Part B Rev. 2024 Dec;30(6):596-606. doi: 10.1089/ten.TEB.2023.0300. Epub 2024 Mar 27. Tissue Eng Part B Rev. 2024. PMID: 38420650 Review.
-
Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.Acta Biomater. 2018 Jul 15;75:427-438. doi: 10.1016/j.actbio.2018.05.051. Epub 2018 Jun 1. Acta Biomater. 2018. PMID: 29859902 Free PMC article.
-
Intermittent actuation attenuates fibrotic behaviour of myofibroblasts.Acta Biomater. 2024 Jan 1;173:80-92. doi: 10.1016/j.actbio.2023.11.017. Epub 2023 Nov 14. Acta Biomater. 2024. PMID: 37967693
-
Inflammation via myeloid differentiation primary response gene 88 signaling mediates the fibrotic response to implantable synthetic poly(ethylene glycol) hydrogels.Acta Biomater. 2019 Dec;100:105-117. doi: 10.1016/j.actbio.2019.09.043. Epub 2019 Sep 27. Acta Biomater. 2019. PMID: 31568879 Free PMC article.
-
Exploring the Overlooked Roles and Mechanisms of Fibroblasts in the Foreign Body Response.Adv Wound Care (New Rochelle). 2023 Feb;12(2):85-96. doi: 10.1089/wound.2022.0066. Epub 2022 Aug 22. Adv Wound Care (New Rochelle). 2023. PMID: 35819293 Free PMC article. Review.
Cited by
-
Nature-inspired surface modification strategies for implantable devices.Mater Today Bio. 2025 Feb 25;31:101615. doi: 10.1016/j.mtbio.2025.101615. eCollection 2025 Apr. Mater Today Bio. 2025. PMID: 40115053 Free PMC article. Review.
-
Differential effects of macrophage subtype-specific cytokines on fibroblast proliferation and endothelial cell function in co-culture system.J Biomed Mater Res A. 2025 Jan;113(1):e37799. doi: 10.1002/jbm.a.37799. Epub 2024 Sep 18. J Biomed Mater Res A. 2025. PMID: 39295242
-
Cellular and microenvironmental cues that promote macrophage fusion and foreign body response.Front Immunol. 2024 Jul 5;15:1411872. doi: 10.3389/fimmu.2024.1411872. eCollection 2024. Front Immunol. 2024. PMID: 39034997 Free PMC article.
-
Decoding biomaterial-associated molecular patterns (BAMPs): influential players in bone graft-related foreign body reactions.PeerJ. 2025 Apr 22;13:e19299. doi: 10.7717/peerj.19299. eCollection 2025. PeerJ. 2025. PMID: 40292103 Free PMC article. Review.
-
Enhanced and sustained T cell activation in response to fluid shear stress.iScience. 2024 May 15;27(6):109999. doi: 10.1016/j.isci.2024.109999. eCollection 2024 Jun 21. iScience. 2024. PMID: 38883838 Free PMC article.
References
-
- Kessler D.A. The basis of the FDA's decision on breast implants. N. Engl. J. Med. 1992;326(25):1713–1715. - PubMed
-
- Milner P.E., Parkes M., Puetzer J.L., Chapman R., Stevens M.M., Cann P., Jeffers J.R.T. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomater. 2018;65:102–111. - PubMed
-
- Landes U., Sathananthan J., Witberg G., De Backer O., Sondergaard L., Abdel-Wahab M., Holzhey D., Kim W.K., Hamm C., Buzzatti N., Montorfano M., Ludwig S., Conradi L., Seiffert M., Guerrero M., El Sabbagh A., Rodés-Cabau J., Guimaraes L., Codner P., Okuno T., Pilgrim T., Fiorina C., Colombo A., Mangieri A., Eltchaninoff H., Nombela-Franco L., Van Wiechen M.P.H., Van Mieghem N.M., Tchétché D., Schoels W.H., Kullmer M., Tamburino C., Sinning J.M., Al-Kassou B., Perlman G.Y., Danenberg H., Ielasi A., Fraccaro C., Tarantini G., De Marco F., Redwood S.R., Lisko J.C., Babaliaros V.C., Laine M., Nerla R., Castriota F., Finkelstein A., Loewenstein I., Eitan A., Jaffe R., Ruile P., Neumann F.J., Piazza N., Alosaimi H., Sievert H., Sievert K., Russo M., Andreas M., Bunc M., Latib A., Godfrey R., Hildick-Smith D., Chuang M.A., Blanke P., Leipsic J., Wood D.A., Nazif T.M., Kodali S., Barbanti M., Kornowski R., Leon M.B., Webb J.G. Transcatheter replacement of transcatheter versus surgically implanted aortic valve bioprostheses. J. Am. Coll. Cardiol. 2021;77(1):1–14. - PubMed
Publication types
LinkOut - more resources
Full Text Sources