Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 27;25(37):25331-25343.
doi: 10.1039/d3cp02424e.

Induced UV photon sensing properties in narrow bandgap CdTe quantum dots through controlling hot electron dynamics

Affiliations

Induced UV photon sensing properties in narrow bandgap CdTe quantum dots through controlling hot electron dynamics

Thankappan Thrupthika et al. Phys Chem Chem Phys. .

Erratum in

Abstract

Mn-doped CdTe (Mn-CdTe) quantum dot (QD) as well as quantum dot solid (QD solid) nanostructures are formed and the established structures are confirmed through HR-TEM analysis. The dynamics of charge carriers in both doped & undoped QD and QD solid structures were investigated by transient absorption (TA) spectroscopy. A slow band edge bleach recovery is obtained for Mn-doped CdTe QD and CdTe QD solid systems at room temperature. Additionally, a blue shifted broad bleach behaviour is identified for the Mn-CdTe QD solid system, which is attributed to hot exciton formation in the solid upon photoexcitation with a higher photon energy than the band gap energy ( > Eg). This noteworthy process of generation of hot excitons and slow charge recombination occurs by means of a synergetic action of the Mn dopant in the host CdTe QD solid system as well as the extended electronic wave function between the coupled QD solid. Apart from the Mn-assisted delayed relaxation of hot electrons in the QD solid, a suppression in dark current as well as a high ION/IOFF ratio of 3203.12 at 1 V is observed in the Mn-CdTe QD-solid based photosensitized device in the visible region. Furthermore, we were able to improve the UV photon harvesting property in a narrow band gap Mn-CdTe QD solid through reducing the higher excited carrier's energy losses.

PubMed Disclaimer

LinkOut - more resources