Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jan 22;17(2):e202300884.
doi: 10.1002/cssc.202300884. Epub 2023 Nov 15.

Gel Biopolymer Electrolytes Based on Saline Water and Seaweed to Support the Large-Scale Production of Sustainable Supercapacitors

Affiliations

Gel Biopolymer Electrolytes Based on Saline Water and Seaweed to Support the Large-Scale Production of Sustainable Supercapacitors

Larissa A Santa-Cruz et al. ChemSusChem. .

Abstract

Climate change and the demand for clean energy have challenged scientists worldwide to produce/store more energy to reduce carbon emissions. This work proposes a conductive gel biopolymer electrolyte to support the sustainable development of high-power aqueous supercapacitors. The gel uses saline water and seaweed as sustainable resources. Herein, a biopolymer agar-agar, extracted from red algae, is modified to increase gel viscosity up to 17-fold. This occurs due to alkaline treatment and an increase in the concentration of the agar-agar biopolymer, resulting in a strengthened gel with cohesive superfibres. The thermal degradation and agar modification mechanisms are explored. The electrolyte is applied to manufacture sustainable and flexible supercapacitors with satisfactory energy density (0.764 Wh kg-1 ) and power density (230 W kg-1 ). As an electrolyte, the aqueous gel promotes a long device cycle life (3500 cycles) for 1 A g-1 , showing good transport properties and low cost of acquisition and enabling the supercapacitor to be manufactured outside a glove box. These features decrease the cost of production and favor scale-up. To this end, this work provides eco-friendly electrolytes for the next generation of flexible energy storage devices.

Keywords: aqueous electrolyte; energy storage; gel biopolymer electrolyte •, sustainable; supercapacitor.

PubMed Disclaimer

References

    1. L. De La Peña, R. Guo, X. Cao, X. Ni, W. Zhang, Resour. Conserv. Recycl. 2022, 177, 105957.
    1. T. Yan, Y. Zou, X. Zhang, D. Li, X. Guo, D. Yang, ACS Appl. Mater. Interfaces 2021, 13, 9856-9864.
    1. P. Jiang, Y. Van Fan, J. J. Klemeš, Appl. Energy 2021, 285, 116441.
    1. T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu, H. Liu, L. Dai, X. Zhang, C. Si, H. Du, K. Zhang, Energy Storage Mater. 2022, 48, 244-262.
    1. P. Chen, F. Xie, F. Tang, T. McNally, Carbohydr. Polym. 2021, 253, 117231.

LinkOut - more resources