Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec:35:128-136.
doi: 10.1016/j.jgar.2023.09.005. Epub 2023 Sep 13.

Epidemiological trends and antimicrobial resistance in Salmonella enterica serovar Typhimurium clones in Taiwan between 2004 and 2019

Affiliations
Free article

Epidemiological trends and antimicrobial resistance in Salmonella enterica serovar Typhimurium clones in Taiwan between 2004 and 2019

Chien-Shun Chiou et al. J Glob Antimicrob Resist. 2023 Dec.
Free article

Abstract

Objectives: We investigated the temporal trends of Salmonella enterica serovar Typhimurium (S. Typhimurium) clones in Taiwan from 2004 to 2019, focusing on antimicrobial resistance (AMR), resistance genetic determinants, and plasmid types.

Methods: Salmonella isolates were characterized using pulsed-field gel electrophoresis (PFGE), whole-genome sequencing, and antimicrobial susceptibility testing. Clones were defined using PFGE clustering and the hierarchical cgMLST clustering (HierCC) assignments.

Results: Seven major S. Typhimurium clones, HC100_2, 13, 41, 305, 310, 501, and 46261, accounted for 97.6% (8079/8275) of human isolates in Taiwan. Each clone displayed a unique AMR profile, resistance genetic determinants, and plasmid types. Four highly resistant clones (HC100_2, 41, 305, and 310) exhibited multiple resistance in 86.5% to 96.1% of isolates. HC100_305 and HC100_2 were pandemic multidrug-resistant clones, characterized by resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT) and ASSuT, respectively. The prevalence of the ACSSuT clone decreased from 68.7% of S. Typhimurium isolates in 2004 to 1.7% in 2019, while the ASSuT clone emerged in 2007 and became the largest clone after 2010. Several plasmids, including IncHI2-IncHI2A, IncC, IncFIB(K), and IncI1-1(α), carried multiple resistance genes or were associated with the carriage of mph(A), blaCMY-2, and blaDHA-1.

Conclusions: Between 2004 and 2019, Taiwan experienced the emergence, prevalence, and subsequent decline of several highly resistant S. Typhimurium clones. The clones defined using the HierCC approach have global comparability. The increasing resistance to third-generation cephalosporins, cephamycins, ciprofloxacin, and azithromycin in recent years poses a significant medical concern.

Keywords: Antimicrobial resistance; Molecular epidemiology; Salmonella; Whole-genome sequencing; cgMLST.

PubMed Disclaimer

Publication types

Substances