Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes
- PMID: 37709733
- PMCID: PMC10502120
- DOI: 10.1038/s41467-023-41424-1
Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes
Abstract
Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of the human gut microbiome. However, human stool samples are available approximately once per day, while commensal population doubling times are likely on the order of minutes-to-hours. Despite this mismatch in timescales, much of the prior work on human gut microbiome time series modeling has assumed that day-to-day fluctuations in taxon abundances are related to population growth or death rates, which is likely not the case. Here, we propose an alternative model of the human gut as a stationary system, where population dynamics occur internally and the bacterial population sizes measured in a bolus of stool represent a steady-state endpoint of these dynamics. We formalize this idea as stochastic logistic growth. We show how this model provides a path toward estimating the growth phases of gut bacterial populations in situ. We validate our model predictions using an in vitro Escherichia coli growth experiment. Finally, we show how this method can be applied to densely-sampled human stool metagenomic time series data. We discuss how these growth phase estimates may be used to better inform metabolic modeling in flow-through ecosystems, like animal guts or industrial bioreactors.
© 2023. Springer Nature Limited.
Conflict of interest statement
The authors decalre no competing interests.
Figures







Similar articles
-
Ecological Stability Emerges at the Level of Strains in the Human Gut Microbiome.mBio. 2023 Apr 25;14(2):e0250222. doi: 10.1128/mbio.02502-22. Epub 2023 Feb 21. mBio. 2023. PMID: 36809109 Free PMC article.
-
Metagenomic Signatures of Gut Infections Caused by Different Escherichia coli Pathotypes.Appl Environ Microbiol. 2019 Nov 27;85(24):e01820-19. doi: 10.1128/AEM.01820-19. Print 2019 Dec 15. Appl Environ Microbiol. 2019. PMID: 31585992 Free PMC article.
-
Antibiotic resistance gene dynamics in the commensal infant gut microbiome over the first year of life.Sci Rep. 2024 Aug 12;14(1):18701. doi: 10.1038/s41598-024-69275-w. Sci Rep. 2024. PMID: 39134593 Free PMC article.
-
Workshop report: Toward the development of a human whole stool reference material for metabolomic and metagenomic gut microbiome measurements.Metabolomics. 2020 Nov 8;16(11):119. doi: 10.1007/s11306-020-01744-5. Metabolomics. 2020. PMID: 33164148 Free PMC article.
-
Rejuvenating the human gut microbiome.Trends Mol Med. 2022 Aug;28(8):619-630. doi: 10.1016/j.molmed.2022.05.005. Epub 2022 Jun 30. Trends Mol Med. 2022. PMID: 35781423 Free PMC article. Review.
Cited by
-
Island biogeography theory provides a plausible explanation for why larger vertebrates and taller humans have more diverse gut microbiomes.ISME J. 2024 Jan 8;18(1):wrae114. doi: 10.1093/ismejo/wrae114. ISME J. 2024. PMID: 38904949 Free PMC article.
-
Ecological Stability Emerges at the Level of Strains in the Human Gut Microbiome.mBio. 2023 Apr 25;14(2):e0250222. doi: 10.1128/mbio.02502-22. Epub 2023 Feb 21. mBio. 2023. PMID: 36809109 Free PMC article.
-
Moving from genome-scale to community-scale metabolic models for the human gut microbiome.Nat Microbiol. 2025 May;10(5):1055-1066. doi: 10.1038/s41564-025-01972-2. Epub 2025 Apr 11. Nat Microbiol. 2025. PMID: 40217129 Review.
-
Investigating macroecological patterns in coarse-grained microbial communities using the stochastic logistic model of growth.Elife. 2024 Jan 22;12:RP89650. doi: 10.7554/eLife.89650. Elife. 2024. PMID: 38251984 Free PMC article.
-
Consideration of a Liquid Mutation-Accumulation Experiment to Measure Mutation Rates by Successive Serial Dilution.Genome Biol Evol. 2025 Apr 3;17(4):evaf049. doi: 10.1093/gbe/evaf049. Genome Biol Evol. 2025. PMID: 40088461 Free PMC article.