Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep;23(2):284-299.
doi: 10.17998/jlc.2023.08.29. Epub 2023 Sep 15.

Imaging prognostication and tumor biology in hepatocellular carcinoma

Affiliations

Imaging prognostication and tumor biology in hepatocellular carcinoma

Diana Kadi et al. J Liver Cancer. 2023 Sep.

Abstract

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy, and represents a significant global health burden with rising incidence rates, despite a more thorough understanding of the etiology and biology of HCC, as well as advancements in diagnosis and treatment modalities. According to emerging evidence, imaging features related to tumor aggressiveness can offer relevant prognostic information, hence validation of imaging prognostic features may allow for better noninvasive outcomes prediction and inform the selection of tailored therapies, ultimately improving survival outcomes for patients with HCC.

Keywords: Carcinoma, hepatocellular; Imaging; Prognosis; Subtypes.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest

The authors have no conflicts of interest to disclose.

Figures

Figure 1.
Figure 1.
HCC in a 54-year-old man with chronic hepatitis B. Axial dynamic pre-contrast (A), early arterial phase (B), portal venous phase (C), and delayed phase (D). MRIs show an 8.3 cm mass (orange arrow) with early arterial phase peritumoral hyperenhancement (yellow arrow) that fades in the later phases. HCC, hepatocellular carcinoma; MRI, magnetic resonance imaging.
Figure 2.
Figure 2.
HCC in a 53-year-old man with chronic hepatitis B. Axial dynamic pre-contrast (A), late arterial phase (B), portal venous phase (C), and delayed phase (D). MRIs show a 4.7 cm mass (orange arrow) with late arterial phase peritumoral hyperenhancement (yellow arrow) which fades in the later phases. HCC, hepatocellular carcinoma; MRI, magnetic resonance imaging.
Figure 3.
Figure 3.
HCC in a 47-year-old female with chronic hepatitis B. Axial dynamic pre-contrast (A), early arterial phase (B), portal venous phase (C), and delayed phase (D) as well as coronal delayed post-contrast (E) and T2-weighted (F). MRIs show a 6.7 cm mass (orange arrow) with tumor in bile duct (yellow arrow) and upstream ductal dilation. HCC, hepatocellular carcinoma; MRI, magnetic resonance imaging.
Figure 4.
Figure 4.
HCC in a 49-year-old man with chronic hepatitis B. Axial dynamic pre-contrast (A), early arterial phase (B), portal venous phase (C), and delayed phase (D). MRIs show a 8.5 cm mass (orange arrow) with slow, progressive enhancement in the periphery (yellow arrows) consistent with ischemia. HCC, hepatocellular carcinoma; MRI, magnetic resonance imaging.
Figure 5.
Figure 5.
HCC in a 46-year-old man with chronic hepatitis B. Axial dynamic pre-contrast (A), early arterial phase (B), portal venous phase (C), and delayed phase (D). MRIs show a 13.9 cm mass (orange arrow) with central non-enhancement on all post-contrast images (yellow arrow) and marked T2 hyperintensity on T2WI (E), consistent with an area of necrosis. HCC, hepatocellular carcinoma; MRI, magnetic resonance imaging.
Figure 6.
Figure 6.
HCC in a 35-year-old man with chronic hepatitis B. (A) Axial DWI (b=0), (B) DWI (b=50), (C) DWI (b=1,000), and (D) ADC map. MRIs show a 8.1 cm mass (arrow) with greater intensity of the tumor than the surrounding liver parenchyma and lower intensity than the spleen, and with ADC value less than the liver but greater than the spleen, consistent with mild-moderate restricted diffusion. DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; MRI, magnetic resonance imaging.

References

    1. Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson B, et al. Annual report to the nation on the status of cancer, 1975-2014, featuring survival. J Natl Cancer Inst. 2017;109:djx030. - PMC - PubMed
    1. Wittekind C. Pathology of liver tumors. Zentralbl Chir. 2000;125:587–591. - PubMed
    1. Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, GarciaCriado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76:681–693. - PMC - PubMed
    1. Llovet JM, De Baere T, Kulik L, Haber PK, Greten TF, Meyer T, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:293–313. - PubMed
    1. Brar G, Greten TF, Graubard BI, McNeel TS, Petrick JL, McGlynn KA, et al. Hepatocellular carcinoma survival by etiology: a SEERmedicare database analysis. Hepatol Commun. 2020;4:1541–1551. - PMC - PubMed